• Title/Summary/Keyword: rice Processing

Search Result 528, Processing Time 0.025 seconds

Studies on Bread-Making Quality of Colored Rice(Suwon 415) Flours (유색미(수원 415호)가루의 제빵성 검토)

  • 강미영;남연주
    • Korean journal of food and cookery science
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 1999
  • Colored rice (Suwon 45) flour was evaluated as a bread flour by the addition of 10% gluten on 3% hydroxypropyl methyl cellulose to check the processing adaptability. Both of these additives led to a successful formation of rice bread. Textural characteristics of colored rice bread crumb baked with 3% hydroxypropyl methyl cellulose revealed lower hardness and chewiness, however, the one with 10% gluten revealed the higher springiness. The retrogradation of colored rice bread during storage was not significantly different from that of wheat bread. Sensory evaluation showed that the crumb texture of bread baked with 3% hydroxypropyl methyl cellulose had softer texture and poor distribution of air-pore size but its springiness was not significantly different from that of wheat bread.

  • PDF

Development of One-Pass Rice Whitener with Cutting Blades of Hard Metal (초경날식 절삭형 완패스정미기의 개발)

  • 정종훈
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.199-209
    • /
    • 1997
  • A one-pass rice whitener with hard metal blades was developed to solve the problems of the existing one-pass rice whitener. The developed one-pass rice whitener was tested and improved through various milling experiments. It showed high performance such as the capacity of 3.5 t/h, the energy consumption of $1.0 kWh/100kg$, milled rice recovery of 91.6%, broken rice rate of 2.2%, the crack rate of 1.9% at the 750 rpm of the roller shaft, compared with those other domestic and foreign one-pass rice whiteners. Especially, it could whiten broun rice of high moisture (16~l7%) with water sprayed at low internal pressure of less than $0.2 kg/cm^2$ and low temperature due to the characteristics of the cutting part composed of 24 hard metal blades. The developed one-pass rice whitener was industrilized and distributed to some rice processing complexs in one fourth price compared with that of imported one-pass rice whiteners.

  • PDF

Effect of different seedling ages and transplanting times on growth and yield of Indica × Japonica rice for noodle processing

  • Kim, Sang Yeol;Oh, Seong Hwan;Seo, Jong Ho;Yi, Hwi Jong;Hwang, Chung Dong;Bae, Hyun Kyung;Choi, Won Yeong;Oh, Myung Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.327-327
    • /
    • 2017
  • The effect of different seedling ages and transplanting times on the growth and yield of Indica ${\times}$ Japonica rice for noodle processing was evaluated to develop a high yielding cultivation technology for increasing the competition against the imported foreign rice. Four seedling ages (10-, 20-, 30- and 33-day old) of two Indica ${\times}$ Japonica rice cultivars (cvs. Saemimyeon and Palbangmi) and three transplanting dates (May 20, May 30 and June 9) were used in the study. Our results showed that the growth and rice yield of the two cultivars were significantly affected by the different seedling ages and transplanting times. Dry matter production at the panicle heading of the two rice cultivars were generally higher in the 30-day old seedling than the other seedling age treatments and then gradually decreased as the transplanting time was delayed from May 20 to June 9. Similar high panicle number per square meter were recorded at the 30-day old seedling between May 20-May 30 transplanting times. In contrast, other yield parameters that includes spikelet number per panicle, 1,000-brown rice weight, and ripened grain ratio (except for the June 9 transplanting time of Palbangmi) were not significantly affected. The milled rice yield of Saemimyeon was higher than that of the Palbangmi regardless of seedling ages and it was also the highest at the 30-day old seedling with four seedling ages. The milled rice yield of Saemimyeon was only slightly decreased as the transplanting time was delayed from the May 20 to June 9 but Palbangmi had a significantly lower milled rice yield at June 9 transplanting due to the low ripened grain ratio. The result indicates that the most suitable seedling age for the cultivars tested was at 30-day old seedling for noodle processing rice and recommended transplanting times were between May 20 and May 30 for the high rice yield in the Yeongnam plain area.

  • PDF

Development of an Energy Model of Rice Processing Complex(II) -Simulation Model Development and Analysis of Energy Requirement- (미곡종합처리장의 에너지 모델 개발(II) -시뮬레이션 모델 개발 및 소요 에너지 분석-)

  • 장홍희;장동일;김만수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.275-287
    • /
    • 1995
  • The rice processing complex(RPC) consisted of the rice handling, drying, storage, and milling processes. It has been established at 83 locations domestically by April 1994, and 200 of RPC will be built more throughout the country. Therefore, this study has been performed to achieve two objectives as the followings : 1) Development of mathematical models which can assess the requirement of electricity, fuel, and labor for four model systems of rice processing complex. 2) Development of a computer simulation model which produce the improved designs of RPC by the evaluation results of energy requirements of four RPC models. The results from this study are summarized as follows : 1) Mathematical models were developed on the basis of result of mass balance analysis and required power of machines for each process. 2) A computer simulation model was developed, which can produce the improved designs of RPC by the evaluation results of energy requirements. The computer simulation model language was BORLAND $C^{++}$. 3) The results of simulation showed that total energy requirements were ranged from 75.94㎾h/t to 124.30㎾h/t. 4) From the results of computer analysis of energy requirement classified by drying type, it was found that energy requirement of the drying type A{paddy rice (PR) for storage-natural air drying(15%), PR for milling-heated air drying(16%)} were less than that of the drying type B{1 step-natural air drying(PR for storage : 18%, PR for milling : 20%), 2 step-heated air drying(PR for storage : 15%, PR for milling : 16%)}. 5) The energy efficient drying method is that all the incoming rough rice to RPC should be dried by national air drying systems. If it is more than the capacity of national air drying system, the amount of surplus rough rice is recommended to be dried by the heated air drying method.

  • PDF

Studies of Cooking Quality with Various Functional Rice (특수미의 혼합취반 적성 검정)

  • Yoo, Kyung-A;Kang, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.3
    • /
    • pp.293-298
    • /
    • 2005
  • This study was investigated to examine the physicochemical properties of functional rice and the adaptable food processing of the added functional rice. The functional rice are Sanghwang rice, Agaricus rice(fermented with basidiomycota), Tochukaso rice, fermented with Monascus rubber rice. Fermented with Monascus rubber rice contains more crude protein, curde lipid, moisture, and total dietary fiber. The cross sectional shapes of the functional rice show polygon shapes, the starch granules of those rice are transformed. In sensory evaluation, fermented with Monascus rubber rice was showed the lowest values for glossness, color, flavor, sweetness, harshness, overall acceptability. The textural properties for those ratios were also affected by the period of storage. After 48 hours, the lowest hardness level was 30% Tochukaso rice addition, and the highest hardness level was 10% Sangwhang rice addition case. In 30% Sangwhang rice, and 30% tochukaso rice case gumminess values were decreased after 48 hours. But in 30% Sangwhang rice, and 30% Tochukaso rice case, the chewiness values decreased. This result suggest that the most suitable addition ratio for the rice cooking condition is 10% functional rice addition.

Bioyield Strength and Ultimate Strength of Rough Rice (벼의 생물체(生物體) 강복강도(降伏强度) 및 극한강도(極限强度))

  • Kim, M.S.;Kim, S.R.;Park, J.M.;Myung, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.99-109
    • /
    • 1990
  • Rough rice is subjected to a series of static and dynamic forces during mechanical harvesting, handling and processing operations. The mechanical properties such as bioyield point, compressive strength, and deformations at the bioyield point and rupture point are important engineering data needed to develop processing machines and to determine reasonable operating conditions for these machines. The objectives of this study were to determine the mechanical properties of the rough rice kernel at loading rate of 0.664 mm/min and 1.673 mm/min and at various moisture contents, and to examine the effect of the moisture content and the loading rate on these mechanical properties. The follwing results were obtained from the study. 1. Bioyield point, rupture point, bioyield strength and ultimate strength of the rough rice kernel generally decreased in magnitude with an increase in moisture content. A little larger values of these mechanical properties were obtained at the higher loading rate. The rough rice variety and the loading rate affected significantly these mechanical properties at low moisture content, but not at the higher moisture levels. 2. Bioyield point of the sample grains varied from 20 to 80 N, and rupture point varied from 45 to 130N. Bioyield point for Japonica-type rough rice was a little higher than that for Indica-type rough rice, but there were little differnces in rupture point between two types of rough rice. 3. Bioyield strength and ultimate strength of the Japonica-type rough rice varied from 10 MPa. to 39 MPa., and from 13 MPa. to 45 MPa. respectively. Those of the Indica-type rough rice varied from 12 MPa. to 42 MPa., and from 15 MPa. to 53 MPa. respectively. 4. Deformations at bioyield point and rupture point ranged from 0.18 mm/min to 0.26 mm, and from 0.28 mm to 0.53 mm respectively. These deformations decreased with an increase in moisture content up to moisture content of approximately 17% (w.b.) and increased again thereafter. 5. Regression equations were developed to predict these mechanical properties for the rough rice kernel as a function of moisture content.

  • PDF

Cooking Characteristics and Firming Rate of Cooked Parboiled Rice (파보일미(Parboiled rice)의 이화학적 특성 -III. 파보일미(추청벼)의 취반 및 노화특성-)

  • 이명선;조은자
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.46-53
    • /
    • 1996
  • To investigate physicochemical and cooking properties of parboiled rice, choochung paddy processed to parboiled rice by three methods (PL, PT, PA) milled and examined hydration, cooking qualities and firming rate of cooked parboiled rice. The results were obtained as follows. The longer the steaming time during parboiling the larger EMC of soaked parboiled rice. Water uptake rate constants (k) of all the parboiled rice during soaking except for PT rice were generally increased than those of raw rice. The longer the steaming time during parboiling the greater volume increase rate constants ( $k_{v}$) of parboiled rice samples. The glelatinization temperature of parboiled rice flour by DSC was more increased than that of raw rice flour. Gelatinized entalpy was decreased and gelatinization content (%SG: degree of starch gelatinization) was increased by parboiling process. In cooking tests, parboiled rices were harder than raw rice and softness (reciprocal of hardness) was greater PT30, PA, PL30 in turns the cooking time of the parboiled rice took longer 3-10 min than that of raw rice, PL30 took longer time than anyother rices. Cooking water of parboiled rices could be observed lighter turbidities than that of raw rice. Firming rate constants of cooked rice during storage 24 hours were generally decreased by parboiling-processing. The time constants, reciprocal of firming constants of cooked PL30 rice were 2 times slower than those of cooked raw rice.e.

  • PDF

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

Study on the Analysis of Optimum Capacity of Rice Processing Complex (미곡종합처리장(米穀綜合處理場)의 적정규모분석(適正規模分析) 연구(硏究))

  • Chang, D.I.;Shin, M.G.;Kwon, T.W.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.16-21
    • /
    • 1987
  • This study was conducted to develop a logic of analysis and to analyze the optimum capacity of rice processing complex (RC) which would be used as a basic design data for RPC. For the above objectives, a case study was carried out for Nonsahn County, Chungnam Province. The optimum capacity was analyzed by the simulation of the PPSARR (computer program) according to the collectable amount of rough rice. The significance of that study was the development of a logic for the analysis of optimum capacity of RPC. The results show that the optimum capacities of RPC arc 2 ton/h for the collectable amount of rough rice of up to 3,000 ton, 4 ton/h for up to 9,000 ton, 5 ton/h for up to 12,000 ton, 8 ton/h for up to 15,000 ton, 10 ton/h for above 15,000 ton. The cons of the post-harvest systems including the RPC of optimum capacity are 65.50-93.78 thousand Won/ton and they are more economical than the custom of 106.5 thousand Won/Ton.

  • PDF