• Title/Summary/Keyword: riboflavin photosensitization

Search Result 5, Processing Time 0.02 seconds

Effect of Glutamic Acid and Monosodium Glutamate on Oxidative Stability of Riboflavin Photosensitized Oil-in-Water Emulsion

  • Ji-Yun Bae;Mi-Ja Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • Effects of glutamic acid (Glu) and monosodium glutamate (MSG) on oxidative stability of oil-in-water (O/W) emulsions with different emulsifier charges during riboflavin (RF) photosensitization were evaluated by analyzing headspace oxygen content and conjugated dienes. Cetyltrimethylammonium bromide (CTAB), Tween 20, and sodium dodecyl sulfate (SDS) were used as cationic, neutral, and anionic emulsifiers, respectively. Glu acted as an antioxidant in CTAB- and Tween-20-stabilized O/W emulsions during RF sensitization, whereas Glu acted as prooxidants in SDS-stabilized O/W emulsions in the dark. However, adding MSG did not have a constant impact on the degree of oxidation in O/W emulsions irrespective of the emulsifier charge. In RF-photosensitized O/W emulsions, the emulsifier charge had a greater influence on antioxidant properties of Glu than on those of MSG.

Decreased Stability of Bisphenol A by Photosensitization (감광제 광산화에 의한 Bisphenol A 안정성 감소)

  • Park, Chan-Uk;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.277-280
    • /
    • 2010
  • Bisphenol A (BPA) is an endocrine disruptor frequently used in food containers, including epoxy resin and polycarbonates. BPA concentrations were monitored by high performance liquid chromatography (HPLC) under photosensitization of riboflavin (RF), methylene blue (MB), rose bengal (RB), or titanium dioxide ($TiO_2$) and the involvement of singlet oxygen was determined using sodium azide ($NaN_3$). The stability of BPA decreased significantly in the order of RF, RB, and MB photosensitization (p<0.05), while the concentration of BPA in samples with $TiO_2$ was not significantly different from that of control samples without photosensitizers under light (p>0.05). The stability of BPA decreased in an MB concentration-dependent manner and increased as the concentration of added $NaN_3$ increased, implying that singlet oxygen was involved in the photodegradation of BPA during MB photosensitization. The results of this study may help control the BPA content in foods or the environments using photosensitized oxidation and visible light irradiation.

Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix

  • Lee, Sang-Jun;Oh, Sumi;Kim, Mi-Ja;Sim, Gun-Sub;Moon, Tae Wha;Lee, JaeHwan
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • Background: Explosive puffing can induce changes in the chemical, nutritional, and sensory quality of red ginseng. The antioxidant properties of ethanolic extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Methods: Bulk oils were heated at $60^{\circ}C$ and $100^{\circ}C$ and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, ferric reducing antioxidant power, total phenolic content, and total flavonoid content, were also performed. Results: The total ginsenoside contents of ethanolic extract from red ginseng and puffed red ginseng were 42.33 mg/g and 49.22 mg/g, respectively. All results from above in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p < 0.05). Generally, extracts of puffed red and red ginseng had high antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rates of lipid oxidation, depending on treatment temperature and the type of assay used. Conclusion: Although ethanolic extracts of puffed red ginseng showed stronger antioxidant capacities than those of red ginseng when in vitro assays were used, more pro-oxidant properties were observed in bulk oils and O/W emulsions.

Antioxidant capacities of Aloe vera (Aloe vera Linne) from Jeju Island, Korea (제주산 알로에 베라(Aloe vera Linne)의 항산화 효과)

  • Seol, Nam Gyu;Jang, Eun Yeong;Sung, Jang Hoon;Moon, Gi Won;Lee, JaeHwan
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.643-647
    • /
    • 2012
  • The antioxidant capacity of aloe vera gel (AG), aloe vera exudates (AE), and a low molecular filtrate of aloe vera gel (ALMF) prepared from aloe vera grown on Jeju Island, Korea was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), and oxygen radical absorbance capacity (ORAC) assays, and total phenolic content (TPC), and total flavonoid content (TFC) were determined. The phenolic compounds in aloe samples were analyzed. Antioxidant capacities in oil-in-water emulsions following riboflavin photosensitization were analyzed using lipid hydroperoxide. AE had significantly higher antioxidant capacity than that of the other samples based on the DPPH, ABTS, and ORAC assays (p<0.05). Lipid hydroperoxide values of 5 mg/mL for AG, AE, and ALMF were 521.78, 272.32, and 699.89 mmol/kg oil, respectively, whereas that of samples without aloe vera was 893.07 mmol/kg oil over 48 h. AE had higher TPC and TFC values. Aloesin and aloin were found in AE, whereas those compounds were only found in trace amounts in AG and ALMF.

Application of Chemical Probes to Detect Superoxide Anion and Singlet Oxygen in Biological Systems during Gamma Irradiation

  • Lee, Min Hee;Cho, Eun Ju;Kim, Ji Hong;Kim, Ji Eun;Chung, Byung Yeoup;Cho, Jae-Young;Lee, Kang-Soo;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • To detect superoxide anion ($O_2{\cdot}^-$) or singlet oxygen ($^1O_2$) in biological systems during gamma irradiation, specific chemical probes, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron) or 2,2,6,6-tetramethyl-piperidine (TEMP), were evaluated. Tiron or TEMP spin adducts was structurally stable in aqueous solution during gamma irradiation up to 500 or 1,000 Gy, respectively. The signal of Tiron semiquinone radical, a spin adduct of Tiron upon reaction with $O_2{\cdot}^-$, was slightly increased by gamma irradiation. This trend was dose-dependently manifested in $O_2$-saturated aqueous solution using nitro blue tetrazolium (NBT), a common probe for both hydrated electron ($e{^-}_{aq}$) and $O_2{\cdot}^-$. In contrast, a spin adduct of TEMP, was never inducible by gamma irradiation, while its signal was substantially enhanced by photosensitization of riboflavin. These results suggest that Tiron and NBT or TEMP could be utilized to detect $O_2{\cdot}^-$ or $^1O_2$ in biological systems during gamma irradiation, although $O_2{\cdot}^-$ or $^1O_2$ are not the main reactive oxygen species produced by water radiolysis.