• Title/Summary/Keyword: rhizosphere bacteria

Search Result 202, Processing Time 0.028 seconds

Isolation of Antagonistic Bacteria to Phytophthora capsici for Biological Control of Phytophthora blight of Red Pepper (고추역병의 생물학적 방제를 위한 길항세균의 분리)

  • 이용세;최장원;김상달;백형석
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • To isolate of antagonistic bacteria to Phytophthora capsici, which cause Phytophthora blight in red pepper, 237 isolates of Pseudomonas spp. and 260 isolates of Bacillus spp. were screened in selective media from rhizosphere soils of red pepper at Kyongsan, Kyongju, Yongchon and Euisung in Kyongbuk. Among total 497 isolates, 8 isolates of Pseudomonas spp and 4 isolates of Bacillus spp. inhibited the mycelial growth of Phytophthora capsici above 50$\%$ . These antagonistic bacteria showed more inhibitory effect on TSA (tryptic soy agar) than V-8 juice agar. Four isolates, P0704, P1201, B1101 and B1901, showing the most prominent antagonistic activity were selected and identified as P. cepacia (P0704, P1201), B. polymyxa (B1101) and B. subtilis (B1901), respectively. Cell free filtrates of these isolates were shown to inhibit zoosporangia germination and mycelial growth of p. capsici indicating that these isolates turned out to be bacteria producing antifungal substances. As a result of antagonistic test to Phytophthora blight in green house p. cepacia (P0704) showed the highest antagonistic effect with 46.7$\%$ and the rest of them were in the range of 13.4$\%$ to 26.7$\%$ .

  • PDF

Effects of Bacillus spp. On Growth of Alfalfa ( Medicago sativa L. ) (Bacillus속이 Alfalfa ( Medicago sativa L. ) 의 생장에 미치는 영향)

  • Choi, Ki-Chun;Youn, Chang;Chun, Woo-Bock
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.239-248
    • /
    • 1997
  • This study was conducted to investigate the effects of antagonistic microorganisms, Bacillus spp., on growth of alfalfa(Medicag0 sativa L.) in repeated cultivation soil(RCS) and unrepeated cultivation soil(URCS). Alfalfa was established by seeding into pots 12 cm in diameter and 9 cm in depth containing 1 : 1 mixture of soil and vermiculite with antagonistic bacteria and pathogenic fungi. The growth experiment of alfalfa was conducted in pots in a vinyl house. The bacteria used in this study were Bacillus subtilis and hsants. B. subtilis was isolated and identified 60m forage rhizosphere soil and hsants isolated through cell fusion fiom B. subtilis 101 and B. thuringiensis. B. subtilis was named B. subtilis 101 and hsants named F -3 and F -8. From dark culture experimenf alfalfa was longer lived in treated soil with antagonistic bacteria than that in non-treated soil, and longer lived in URCS than that in RCS. However, alfalfa was shorter lived in RCS and URCS than that in autoclaved RCS. The number of leaves of alfalfa were positively affected by the inoculation of the antagonistic bacteria in both RCS and URCS. Dry weight of shoot and root was increased by the inoculation of the antagonistic bacteria(P< 0.05). However, the growth of alfalfa was decreased by the inoculation of the pathogenic hngi both RCS apd URCS.

  • PDF

Soil Microbial Flora and Chemical Properties as Influenced by the Application of Pig Manure Compost (돈분퇴비의 시용이 배추재배지 토양의 미생물상 및 화학성에 미치는 영향)

  • Weon, Hang-Yeon;Kwon, Jang-Sik;Suh, Jang-Sun;Choi, Woo-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.76-83
    • /
    • 1999
  • Studies were conducted during 2 months from May of 1997 to evaluate the effects of pig manure compost(PMC) on soil microbial flora. To do so, a field experiment of Chinese cabbage(Brassica campestris L.) was conducted in a randomized block design on a sandy loam soil and microbial floral characteristics in soils were analyzed. Treatments to control included the application of PMC at (A) $8Mg\;ha^{-1}$CM-8), (B) $29Mg\;ha^{-1}$(CM-2,9), and (C) $57Mg\;ha^{-1}$(CM-57), and of chemical fertilizer(D) at $320N-80P_2O_5-200K_2O\;kg\;ha^{-1}$(NPK). In each treatment, the rhizosphere and non-rhizosphere soils were tested for the analysis of microbial populations. The populations of bacteria, actinomycetes, and fungi increased in soils with the applications of PMC and chemical fertilizer, but that of Bacillus sp. decreased. However, the population of fluorescent Pseudomonas sp. was reduced in NPK plots only. With increasing application rates of PMC, the number of colony forming units(cfu) of bacteria (Pseudomonas sp. and actinomycetes) and fungi increased. in all PMC-treated plots, the population density peaked at early growth stage for bacteria(including Bacillus sp.), at late growth for fluorscent Pseudomonas sp., and at harvest for fungi and actinomycetes. The rhizosphere effect was greatest for fluorscent Pseudomonas sp. As the application rates of PMC increased, Total N, organic matter, available phosphate, and exchangeable -K, -Ca, and -Mg increased compared to control, but soil pH was lowered. In NPK plots, EC was 3.4-fold and exchangeable K was 5-fold higher than control.

  • PDF

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Effect of Bacterial Population from Rhizosphere of Various Foliage Plants on Removal of Indoor Volatile Organic Compounds (다양한 관엽식물의 근권부 박테리아 집단이 실내 휘발성 유기화합물질의 제거에 미치는 영향)

  • Chun, Se-Chul;Yoo, Mung-Hwa;Moon, Young-Sook;Shin, Mi-Ho;Son, Ki-Cheol;Chung, Ill-Min;Kays, Stanley J.
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.476-483
    • /
    • 2010
  • Total bacterial populations were cultured from the Hydroball cultivation media in the rhizospheres of 9 different plants including $Hedera$ $helix$ L. and $Dracaena$ $deremensis$ cv. Warneckii Compacta, etc. These cultured bacterial populations were studied to test if the bacterial populations in the plant growing pots may play a role on removal of volatile organic compounds (VOCs) such as benzene and toluene in the air. To meet this objective, first, we tested the possibility of removal of VOCs by the cultured total bacteria alone. The residual rates of benzene by the inoculation of total bacterial populations from the different plant growth media were significantly different, ranging from 0.741-1.000 of $Spathiphyllum$ $wallisii$ 'Regal', $Pachira$ $aquatica$, $Ficus$ $elastica$, $Dieffenbachia$ sp. 'Marrianne' Hort., $Chamaedorea$ $elegans$, compared to the control with residual rate of 0.596 (LSD, $P$=0.05). This trend was also similar with toluene, depending on different plants. Based on these results, we inoculated the bacterial population cultured from $P.$ $aquatica$ into the plant-growing pots of $P.$ $aquatica$, $F.$ $elastica$, and $S.$ $podophyllum$ inside the chamber followed by the VOCs injection. The inoculated bacteria had significant effect on the removal of benzene and toluene, compared to the removal efficacy by the plants without inoculation, indicating that microbes in the rhizosphere could play a significant role on the removal of VOCs along with plants.

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Potential for the Uptake and Removal of Arsenic [As (V) and As (III)] and the Reduction of As (V) to As (III) by Bacillus licheniformis (DAS1) under Different Stresses

  • Tripti, Kumari;Sayantan, D.;Shardendu, Shardendu;Singh, Durgesh Narain;Tripathi, Anil K.
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.238-248
    • /
    • 2014
  • The metalloid arsenic (Z = 33) is considered to be a significant potential threat to human health due to its ubiquity and toxicity, even in rural regions. In this study a rural region contaminated with arsenic, located at longitude $85^{\circ}$ 32'E and latitude $25^{\circ}$ 11'N, was initially examined. Arsenic tolerant bacteria from the rhizosphere of Amaranthas viridis were found and identified as Bacillus licheniformis through 16S rRNA gene sequencing. The potential for the uptake and removal of arsenic at 3, 6 and 9 mM [As(V)], and 2, 4 and 6 mM [As(III)], and for the reduction of the above concentrations of As(V) to As(III) by the Bacillus licheniformis were then assessed. The minimal inhibitory concentrations (MIC) for As(V) and As(III) was determined to be 10 and 7 mM, respectively. At 3 mM 100% As(V) was uptaken by the bacteria with the liberation of 42% As(III) into the medium, whereas at 6 mM As(V), 76% AS(V) was removed from the media and 56% was reduced to As(III). At 2 mM As(III), the bacteria consumed 100%, whereas at 6 mM, the As(III) consumption was only 40%. The role of pH was significant for the speciation, availability and toxicity of the arsenic, which was measured as the variation in growth, uptake and content of cell protein. Both As(V) and As(III) were most toxic at around a neutral pH, whereas both acidic and basic pH favored growth, but at variable levels. Contrary to many reports, the total cell protein content in the bacteria was enhanced by both As(V) and As(III) stress.

Identification of an antagonistic bacteria and its antibiotic substance against Colletotrichm orbiculare causing anthracnose on cucumber

  • Chae, Hee-Jung;Moon, Surk-Sik;Ahn, Jong-Woong;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.102.1-102
    • /
    • 2003
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens (Siegesbeckia pubescens Makino;Family:Compositae) in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain was identified as Pseudomonu aureofaciens. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antibiotic activity was found from the culture filtrate of TSB(tryptic soy broth) and its active compounds were quantitatively bound to XAD adsorber resin. The antibiotic spectrum was broad and growth of C. orbiculare and F. oxysporum, B. cinerea were inhibited at very low concentration. The chemical data from various chromatographic procedures showed that active fraction consisted of at least two phenazine derivatives. However, the metabolites had no inhibitory effect on Pythium ultimum which was reported to be sensitive to phenazine antibiotics. The compounds responsible for the activity are now under investigation.

  • PDF

Promoted Growth of Maize by the Phosphate Solubilizing Bacteria Isolated from North-east China

  • Wu, Hai-Yan;Wang, Li-Chun;Gao, Xing-Ai;Jin, Rong-De;Fan, Zuo-Wei;Kim, Kil-Yong;Zhao, Lan-Po
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.112-117
    • /
    • 2011
  • A strain of phosphate solubilizing bacterium was isolated from rhizosphere and identified as Burkholderia sp. by 16S-rRNA gene sequence analyses. The bacterium was found to release gluconic acid and the solubilization of hydroxyapatite in the liquid medium by a significant drop in pH to 3.7 from an initial pH 7.0. The soluble-P concentration continuously increased during the incubation periods and the total amount of soluble P released in culture filtrate was detected at 990 mg $L^{-1}$ after 10 days of inoculation. Most promoted maize growth was found in the standard NPK (240-120-120 kg $ha^{-1}$) soil inoculation with Burkholderia sp. (Twenty milliliters/plant, 106 CFU) and also in the absence of Burkholderia sp. inoculation, the soil amended with only 2/3 levels of P gave significant higher plant yield compared to 1/3 levels of P or without P supplementation.