• Title/Summary/Keyword: rheological properties

Search Result 1,371, Processing Time 0.031 seconds

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

Rheological characterization of nanoparticle filled polymeric systems

  • Kim, Byoung-Chul;Chae, Dong-Wook
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.219-219
    • /
    • 2006
  • This study focuses on the effects of dispersion method of a nanoparticle in a polymer matrix such as melt mixing, solution blending, and in-situ polymerization on the physical properties of the nanocomposites. Introduction of a nanoparticle to a polymer resulted in some unusual physical properties. In some cases the nanoparticle played a role of a nucleating agent, leading to decreasing induction time to crystallization. In addition, the dispersion state of the nanoparticle in the polymer matrix also had a significant influence on the physical properties of the nanocomposites. Hence the method of introducing the nanoparticle to the polymer made contribution to the rheological properties of the nanocomposite systems.

  • PDF

Steady and Dynamic Shear Rheological Properties of Buckwheat Starch-galactomannan Mixtures

  • Choi, Dong-Won;Chang, Yoon-Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.192-196
    • /
    • 2012
  • This study investigated the effects of galacomannans (guar gum, tara gum, and locust bean gum) on the rheological properties of buckwheat starch pastes under steady and dynamic shear conditions. The power law and Casson models were applied to describe the flow behavior of the buckwheat starch and galactomannan mixtures. The values of the apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for buckwheat starch-galactomannan mixtures were significantly greater than those for the control, indicating that there was a high synergism of the starch with galactomannans. The magnitudes of storage modulus (G') and loss modulus (G") for the starch-galactomannan mixtures increased with increasing frequency (${\omega}$). The dynamic moduli (G', G"), and complex viscosity (${\eta}^*$) for the buckwheat starch-galactomannan mixtures were significantly higher than those for the control.

Rheology Properties of Belite-rich Cement Mortar Added Blastfurnace Slag and Polycarbonate-based Superplasticizer (고로슬래그와 폴리카르본산계 유기 혼화제를 첨가한 Belite-rich Cement 모르타르 유동특성)

  • 송종택;송종택;조현태;황인수;박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.145-151
    • /
    • 2000
  • In order to investigate the rheological properties of belite-rich cement(BRC) added polycarbonate-based superplasticizer and blastfurnace slags which have different blaines at 4500, 6000 and 8000$\textrm{cm}^2$/g, the change of minislumps and mortar slumps are measured with time. The rheological properties improve as specific surface area of added slag decreases or amount of polycarbonate-based superplasticizer increases. The slump loss can be controlled effectively by the steric hinderance effect of polycarbonate-based superplasticizer. According to the results, when mix proportion of the mortar is 1.5% mass content of superplasticizer and 30% mass addition of blastfurnace slag which blaine is 4500$\textrm{cm}^2$/g, the best mortar slump can be achieved without any significant segregation of materials.

  • PDF

The Effect of Chitosan on the Rheological Properties of Soymilk and Quality Characteristics of Tofu

  • Han, Jin-Suk;Kim. Mee-Ra
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.224-230
    • /
    • 2005
  • The effects of low viscosity chitosan on the rheological properties of soymilk using a model system and on tofu qualities were examined. The flow behavior of soy milk with chitosan closed the Newtonian flow and stabilized according to increasing chitosan concentration. The soymilk containing $glucono-\delta-lactone$ exhibited a more pseudoplastic flow behavior compared with that of the control soymilk. The addition of low viscosity chitosan to the tofu preparation did not significantly affect its physicochemical properties. However, the results of the TEM image and instrumental textural properties showed that low viscosity chitosan affected the construction of the tofu structure. Chitosan tofu had low scores across the whole field of appearance in the sensory evaluation, and its overall eating quality was scored significantly lower. These results suggest that the addition of low viscosity chit os an affects the quality of tofu, which changes according to the degree of polymerization and concentration of chitosan.

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.

The Variation of Offset Ink Properties According to the Vegetable Fatty Acid Esters (Vegetable Fatty Acid Esters에 따른 평판 잉크의 물성 변화에 관한 연구)

  • Park, Jung-Min;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.1-16
    • /
    • 2011
  • In these days, according to increased environmental regulations, to reduce the VOC content in paints and inks efforts are now in progress. A lot of research have progressed hydrocarbon solvents substitute with vegetable oil or ester in the printing ink but it is restricted to use vegetable oil in the inks because of high molecular weight and viscosity. Oil ester currently developed for printing inks still have some drawbacks, but overall the printability and print quality when using ester than hydrocarbon solvents are showing good results. Thus, in this paper, I studied about the properties variation of the varnish and inks according to vegetable ester, after I reacted vegetable ester using the vegetable fatty acid and ethyl alcohol, butyl alcohol. The compared in order of average molecular weight by the GPC method, rheological properties were found by rotational rheometer, and emulsion behavior were compared by high speed emulsification tester.

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

Physicochemical, Structural, and Rheological Properties of New Domestic Potato Cultivars (국산 신품종 감자의 이화학적, 구조적 및 유변학적 특성)

  • Choi, Moonkyeung;Lee, Jungu;Jin, Yong-Ik;Chang, Dong-Chil;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.608-615
    • /
    • 2017
  • The objective of this study was to evaluate the physicochemical, structural, and rheological properties of new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun') against the foreign potato cultivar 'Atlantic'. Based on the results obtained from scanning electron micrograph, X-ray, and Fourier transform infrared spectrum analyses, the structural properties of all potato flours were not considerably different. Rapid visco analyzer analyses showed that the setback viscosities of 'Goun', 'Sebong', and 'Jinsun' were significantly lower than that of 'Atlantic'. For steady shear rheological properties, potato flour dispersions showed shear-thinning behaviors (n=0.45~0.49) at $25^{\circ}C$. Apparent viscosity and consistency index of 'Atlantic' were similar to those of 'Sebong' and 'Jinsun'. For dynamic shear rheological properties, storage modulus (G′) and loss modulus increased, whereas complex viscosity (${\eta}^*$) was reduced with increasing frequency from 0.63 to 62.8 rad/s. G′ and ${\eta}^*$ values of 'Jinsun' were significantly higher than those of the other potato cultivars.

Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars (품종별 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성)

  • Lee, Jungu;Choi, Moonkyeung;Kang, Jinsoo;Chung, Yehji;Jin, Yong-Ik;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • The objective of this research was to elucidate the physicochemical, structural, pasting and rheological properties of potato starch isolated from a foreign potato cultivar ('Atlantic') and new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun'). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and one-dimensional nuclear magnetic resonance (1D NMR) showed that the structural properties of potato starch did not vary significantly with cultivars. RVA analysis demonstrated that the 'Atlantic' starch had the highest breakdown viscosity among all potato starches. In steady shear rheological analysis, all potato starch dispersions showed shear-thinning behaviors (n =0.63-0.72) at $25^{\circ}C$. The highest apparent viscosity (${\eta}_{a,5}$), consistency index (K), and yield stress (${\sigma}_{oc}$) were observed in the 'Goun' starch dispersion. In dynamic shear rheological analysis, storage modulus (G') and loss modulus (G") values of new domestic potato starch dispersions were higher than those of the 'Atlantic' starch dispersion.