• Title/Summary/Keyword: rheological analysis

Search Result 347, Processing Time 0.024 seconds

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(II) - Visco Elastic Analysis Model - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(II) - 점탄성 해석 모델 -)

  • 임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.137-143
    • /
    • 2003
  • The initial condition of $\Delta \sigma_3 \;=\; \Delta u$ is used for analyzing the time dependent behavior of ground. This is based on the concept that the coefficient of pore water B is the unity on the condition of saturation. but some measured consolidation data in the field showed that the pore water pressure was not dissipated as time elapsed but it was maintained constant value or it's dissipation rate was slower than that of the predicted. and so the measured data of pore water pressure was not consistent with that of settlement. In this study, the rheological model for the pore water pressure behavior on undrained condition was induced and compared with the experiment data of the literature. The result showed that the suggested model was consistent well with the result of experiment, but the suggested model could not explain the effect of the decrease of void ratio according to consolidation.

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Process Analysis and Experimental Evaluation by the Viscosity Measurement of Rheological Materials (레오로지 소재의 점도측정에 의한 공정해석 및 실험적 평가)

  • 서판기;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.70-73
    • /
    • 2002
  • Using a simple compression test, the viscosity measurement experiment is carried out with the grain-refined Al-Si alloy(A356). The measured rheological data are expressed with power-law(Ostwald-de Waele) model and using commercial package, MAGMAsoft, coefficients of Ostwald-de Waele model and Carreau-Yasuda model are calculated. To verify the viscosity data, the die is designed to be applicable to the semi-solid die casting of automotive component and filling test is carried out. The filling test and the simulation result are compared and in good agreement. Hereafter, these data are considered to be usefully allied other product in the semi-solid die casting.

  • PDF

Experimental Evaluation on Shear Modulus of MRE due to MRP Coating and Induced Current (Magnetic Reactive Particle 코팅 및 인가전류에 따른 Magnetorheological Elastomer 의 전단계수 측정)

  • Oh, Jae-Eung;Jeong, Un-Chang;Kim, Jin-Su;Yoon, Jung-Min;Roh, Jeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.927-929
    • /
    • 2014
  • MRE(Magneto-rheological Elastomer) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation). Magnetic reactive powder(MRP), having rapid magnetic reaction, was selected as a magnetic particle to give magnetic field reactive modulus. The mechanical properties of manufactured MREs were measured with the application of magnetic field. The analysis of MR effect was carried out by FFT analyzer with various induced current. As induced magnetic field intensity increased and coated with MRP, increment of MR effect was observed.

  • PDF

Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles (승용차용 연속가변 ER댐퍼의 성능연구)

  • Kim, K.S.;Chang, E.;Choi, S.B.;Cheong, C.C.;Suh, M.S.;Yeo, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

Electromagnetic Design Methodology for MR Fluid Actuator (MR 유체 작동기의 전자기적 설계 방법)

  • Nam Yun-Joo;Moon Young-Jin;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

Crack propagation in flexural fatigue of concrete using rheological-dynamical theory

  • Pancic, Aleksandar;Milasinovic, Dragan D.;Goles, Danica
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The concrete fatigue analysis can be performed with the use of fracture mechanics. The fracture mechanics defines the fatigue crack propagation as the relationship of crack growth rate and stress intensity factor. In contrast to metal, the application of fracture mechanics to concrete is more complicated and therefore many authors have introduced empirical expressions using Paris law. The topic of this paper is development of a new prediction of fatigue crack propagation for concrete using rheological-dynamical analogy (RDA) and finite element method (FEM) in the frame of linear elastic fracture mechanics (LEFM). The static and cyclic fatigue three-point bending tests on notched beams are considered. Verification of the proposed approach was performed on the test results taken from the literature. The comparison between the theoretical model and experimental results indicates that the model proposed in this paper is valid to predict the crack propagation in flexural fatigue of concrete.

Rheological Characteristics of Fine-Grained Soil with Sand Content (세립토의 모래함량에 따른 유변학적 특성 분석)

  • Kang, Hyo-Sub;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1897-1905
    • /
    • 2013
  • Rheological properties such as yield stress and viscosity is the main parameters to determine the fluidity of the debris flow. In this study, several series of rheometer tests were performed to investigate rheological properties of fine-grained soil samples with various sand contents and various liquidity indices. Test results indicated that the general shape of the flow curves for fine-grained soils had characteristics of a shear thinning fluid, with a decrease in viscosity as shear rate increases. The yield stress and viscosity of fine-grained soil samples with same sand content gradually decreased as the liquidity index increased. At the same liquidity index, yield stress and viscosity of fine-grained soil increased with an increase in sand content. The yield stress and viscosity of fine-grained soil greatly decreased with a slight increase in water content. Also, the yield stress and viscosity tend to increase with increasing concentration by volume($C_v$) of the fluid matrix. The values of the four coefficients ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, and ${\beta}_2$ were obtained by regression analysis for each fine-grained soil.