• Title/Summary/Keyword: rheological analysis

Search Result 346, Processing Time 0.029 seconds

Mechanical analysis of tunnels supported by yieldable steel ribs in rheological rocks

  • Wu, Kui;Shao, Zhushan;Qin, Su;Zhao, Nannan
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • Yieldable steel ribs have been widely applied in tunnels excavated in rheological rocks. For further understanding the influence of yieldable steel ribs on supporting effect, mechanical behavior of tunnels supported by them in rheological rocks is investigated in this paper. Taking into account the deformation characteristic of yieldable steel ribs, their deformation is divided into three stages. In order to modify the stiffness of yieldable steel ribs in different deformation stages, two stiffness correction factors are introduced in the latter two stages. Viscoelastic analytical solutions for the displacement and pressure in the rock-support interface in each deformation stage are obtained. The reliability of the theoretical analysis is verified by use of numerical simulation. It could be concluded that yieldable steel ribs are able to reduce pressure acting on them without becoming damaged through accommodating the rock deformation. The influence of stiffness correction factor in yielding deformation stage on pressure and displacement could be neglected with it remaining at a low level. Furthermore, there is a linearly descending relationship of pressure with yielding displacement in linear viscoelastic rocks.

A Laboratory Study on Rheological Properties of Fluid Mud (머드유동층의 유동학적 특성에 관한 실험적 연구)

  • Nguyen, Dinh Phuc;Jung, Eui-Taek;Park, Kun-Chul;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In this study, rheological properties of kaolinite and three different porcelain fluid muds are quantitatively estimated with the latest rheometer, in which variations of their viscosities and yield stresses with their densities are estimated. This study also involves the measurements for the basic physico-chemical properties of fluid muds and the qualitative analysis of their correlation between physico-chemical and rheological properties. Experimental results of rheological tests show that fluid muds in general belong to Pseudo-plastic fluids and both viscosities and yield stresses of them increase exponentially with the increase of density while they are remarkably different in quantity depending on sediments.

Optimization of Ramen Flour Formulation by Mixture Experimental Design (혼합물실험설계법에 의한 라면 밀가루 혼합비의 최적화)

  • Park, Hye Ryong;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Ramen flour formulation was optimized by applying a mixture experimental design. In the optimization, the overall palatability (OP) of cooked ramen and the rheological properties of selected dough were maximized or minimized. Blended ratios of the ingredients such as Dark Northern Spring (DNS), Hard Red Winter (HRW), and Soft White (SW) were designed on a simplex-lattice. Dough rheological properties were measured by Rapid Visco Analyser (RVA), Farinograph, and Extensograph, and the overall palatability by sensory evaluation. Several principal dough rheological properties such as RVA peak viscosity (PV), Farinograph development time (DT), and Extensograph resistance/extensibility after 45 min (R/E 45 min) were selected to influence the overall palatability by canonical correlation analysis (CCA). Goals of the optimization were given as OP maximized, PV maximized, DT minimized, and R/E at 45 min maximized. The optimization results were found to be DNS 33.3%, HRW 33.3%, and SW 33.3% with OP, 5.825; PV, 587.9 cP; DT, 3.1 min; R/E at 45 min, 2.339 BU/mm.

Mechanical, rheological, and durability analysis of self-consolidating concretes containing recycled aggregates

  • Hiwa Mollaei;Taleb Moradi Shaghaghi;Hasan Afshin;Reza Saleh Ahari;Seyed Saeed Mirrezaei
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.141-157
    • /
    • 2023
  • In the present paper, the effect of recycled aggregates on the rheological and mechanical properties of self-consolidating concrete is investigated experimentally and numerically. Hence, the specimen with two types of recycled aggregates, i.e., known and unknown resistance origins, are utilized for the studied specimens. The experiments in this study are designed using the Box-Behnken method, which is one of the response surface methods. Input variables in mixtures include silica fume in the range of 5-15% as a percentage substitute for cement weight and recycled coarse and fine aggregates in the range of 0-50% for both series of recycled materials as a substitute for natural materials. The studied responses are slump flow, V funnel, compressive strength, tensile strength, and durability. The results indicate that the increase in the amount of recycled aggregates reduces the rheological and mechanical properties of the mixtures, while silica fume effectively improves the mechanical properties. In addition, the results demonstrate that the fine recycled aggregates affect the total response of the concrete significantly. The results of tensile and compressive strengths indicate that the mixtures including 50% recycled materials with known resistance origin demonstrate better responses up to 8 and 10% compared to the materials with unknown resistance origins, respectively. Recycled materials with a specific resistance origin also show better results than recycled materials with an unknown resistance origin. Durability test results represent those concretes containing recycled coarse aggregates have lower strength compared to recycled fine aggregates. Also, a series of mathematical relationships for all the responses are presented using variance analysis to predict mixtures' rheological and mechanical properties.

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

The Nonlinear Analysis and Modeling of the ER Fluid Damper Using Higher Order Spectrum (고차 주파수 스펙트럼을 이용한 ER 유체 댐퍼의 비선형 특성 해석 및 모델링 연구)

  • Kim, Dong-Hyun;Joung, Tae-Whee;Joh, Joongseon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.105-112
    • /
    • 2006
  • The nonlinear damping force model is made to identify the properties of the ER (electro-rheological) fluid suspension damper. The instrumentation is carried out to measure the damping force of the ER damper. The higher order spectral analysis method is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. The distinctive higher order nonlinear characteristics are observed. The nonlinear damping force model, which has the higher order velocity terms, is proposed with the result of higher order spectrum analysis. The higher order terms coefficients, which vary according to the strength of the electric field, are calculated using the least square method.

항공기 엔진용 유체 마운트의 성능해석

  • An, Yeong-Gong;Ahmadian, Mehdi;Morishita, Shin
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.220-227
    • /
    • 1998
  • This paper evaluate the performance of a Magneto-Rheological (MR) fluid mount. The mount incorporates MR fluid in a conventional fluid mount to open and closed the inertia track between the fluid chambers of the mount. It is shown that such switching of the inertia track improves the mount's isolation effect, by eliminating the large transmissibility peak that commonly exists at frequencies higher than the notch frequency for conventional fluid mounts. The switching frequencies of the MR mount is evaluated, based on the parameters of the mount. A simple control scheme for switching the mount between the open and closed states is proposed, and the performance of the controlled mount is compared with conventional mounts. A sensitivity analysis is conducted to evaluate the effect of parameter errors in estimating the switching frequencies and mount performance. The results show that the switching frequencies can be accurately determined from mount parameters that are easily measured or estimated.

  • PDF

Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars (품종별 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성)

  • Lee, Jungu;Choi, Moonkyeung;Kang, Jinsoo;Chung, Yehji;Jin, Yong-Ik;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • The objective of this research was to elucidate the physicochemical, structural, pasting and rheological properties of potato starch isolated from a foreign potato cultivar ('Atlantic') and new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun'). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and one-dimensional nuclear magnetic resonance (1D NMR) showed that the structural properties of potato starch did not vary significantly with cultivars. RVA analysis demonstrated that the 'Atlantic' starch had the highest breakdown viscosity among all potato starches. In steady shear rheological analysis, all potato starch dispersions showed shear-thinning behaviors (n =0.63-0.72) at $25^{\circ}C$. The highest apparent viscosity (${\eta}_{a,5}$), consistency index (K), and yield stress (${\sigma}_{oc}$) were observed in the 'Goun' starch dispersion. In dynamic shear rheological analysis, storage modulus (G') and loss modulus (G") values of new domestic potato starch dispersions were higher than those of the 'Atlantic' starch dispersion.

Rheological properties of flour dough containing roasted rice bran (볶은 쌀겨를 첨가한 밀가루 반죽의 rheology 특성)

  • Shin, Hyun-Kwang;Lee, Jeong-Hoon;Chung, Koo-Chun;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.587-593
    • /
    • 2018
  • This study was carried out to investigate the effect of roasted rice bran (RRB) on the rheological properties of bread dough. According to farinograph analysis, the consistency of the control sample was greatest. There were no significant differences in water absorption (p<0.05). Lower values of development time, stability, and time to breakdown, which were affected, by the addition of RRB, were observed for RRB-containing dough samples, compared to the control dough sample. Addition of RRB significantly increased the mixing tolerance index (MTI). According to rheofermentometer analysis, the values of H'm, $T^{\prime}_1$, and retention volume decreased with increase in the amount of RRB added. According to the rapid visco analyzer (RVA) analysis, peak viscosity, holding strength, and setback values were greater in the control than in the RRB-containing samples. The addition of RRB to the flour influenced rheological properties like fermentation volume and acidity. The total acidity increased with the increase in the amount of RRB added. The present study has indicated that there was no significant difference between the rheological properties of the control and 5% RRB-containing dough samples. Therefore, the addition of 5% RRB could be an effective way to produce functional flour bread without affecting its desirable physical properties.

Damping Performance Analysis of Electro-Rheological Squeeze Film Damper Sealed with Slotted Rings (슬롯 링을 장착한 전기유변 스퀴즈 필름 댐퍼의 감쇠성능 해석)

  • 정시영;김창호;이용복
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2000
  • The present paper proposes a new type of an electro-rheological squeeze film damper (ER SFD) of which the damping capacity can be controlled by the application of electric field. The new ER .SFD- is sealed with slotted rings having electrodes at the inside of the constant gap. The ER SFD can provent the problem of electric short which might be occurred in a previous ER SFD. Reynolds lubrication equation for a Newtonian fluid and the end leakage equation for ER fluids are numerically solved to get the pressure distributions and the damping coefficients of the ER SFD. The results show that the damping coefficients greatly increase with increasing the yield shear stress of ER fluid. In addition, the unbalance response analysis of a flexible rotor supported on the new ER SFD implies that the rotor system can be operated with the minimum of rotor amplitude and force transmissibility by controlling the yield shear stress of ER fluids properly.