• Title/Summary/Keyword: rhamnazin

Search Result 4, Processing Time 0.024 seconds

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Synthesis of Rhamnazin and Ombuin as Methylated Metabolites of Quercetin (케르세틴의 메틸화된 대사체인 람나진과 옴부인의 합성)

  • Jang, Jongyun;Kang, Dong Wook
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.19-23
    • /
    • 2018
  • The methylated metabolites of quercetin, rhamnazin and ombuin are highly likely to develop as anticancer and anti-inflammatory agents. In this study, we synthesized rhamnazin through selective methylation of quercetin hydroxyl group, which has not been reported so far. In addition, a new synthetic method was developed to correct the problems of previous synthetic method of ombuin, one of the methylated metabolites of quercetin.

Antioxidative Compounds isolated from the Stem Bark of Eucalyptus globulus (유칼리나무의 수피로부터 분리한 항산화활성 물질)

  • Lee, In-Kyoung;Yun, Bong-Sik;Kim, Jong-Pyung;Chung, Sung-Hyun;Shim, Gyu-Seop;Yoo, Ick-Dong
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.3
    • /
    • pp.163-168
    • /
    • 1998
  • Seven antioxidative compounds were isolated from chloroform and ethyl acetate extracts of the stem bark of Eucalyptus globulus (Myrtaceae). They were identified as rhamnazin (1), rhamnetin (2), naringenin (3), eriodictyol (4), quercetin (5), taxifolin (6) and dihydrokaempferol-3-rhamnoside (7) on the basis of various spectroscopic analyses. These compounds inhibited lipid peroxidation with $IC_{50}$ values of 0.08-30 ${\mu}g/ml$.

  • PDF

Lipid Peroxidation Inhibitory Activity of Some Constituents isolated from the Stem Bark of Eucalyptus globulus

  • Yun, Bong-Sik;Lee, In-Kyoung;Kim, Jong-Pyung;Chung, Sung-Hyun;Shim, Gyu-Seop;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.147-150
    • /
    • 2000
  • Twelve compounds with lipid peroxidation inhibitory activity were isolated from the stem bark of E. globulus. Their structures were assigned as a new aromatic monoterpene (1) and eleven known compounds, pinoresinol (2), vomifoliol (3), 3,4,5-trimethoxyphenol 1-O-$\beta$-D-(6'-O-galloyl)glucopyranoside (4), methyl gallate (5), rhamnazin (6), rhamnetin (7), eriodictyol (8), quercetin (9), taxifolin (10), engelitin (11), and catechin (12) on the basis of UV, mass, and NMR spectroscopic analyses. These compounds except vomifoliol significantly inhibited lipid peroxidation in rat liver microsome.

  • PDF