• Title/Summary/Keyword: reynolds equation

Search Result 660, Processing Time 0.031 seconds

A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

Numerical Simulation of Supersonic Inlet Flow (초음속 흡입구 유동의 수치모사)

  • Kwak, Ein-Keun;Yoo, Il-Yong;Lee, Seung-Soo;Jung, Suk-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.133-137
    • /
    • 2009
  • Numerical simulations of flows in an axisymmetric supersonic inlet with bleed regions were performed. For the simulations, the existing code which solves the RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was transformed to axisymmetric form and bleed boundary condition was applied to the code. In this paper, the modified code was validated by comparing the results against an experimental data and other computational results for flow on a bump and over an oblique shock with bleed region. Using the code, numerical simulations were performed for the flow in the inlet with multiple bleed regions.

  • PDF

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (II) - The Effect of the Reynolds Number (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각특성에 관한 연구(II) -레이놀즈 수의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.509-517
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To estimate the thermal performance of the heat-generating components arranged by $5\times11$ in channel flow, three variables are used: the inlet velocity, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. The experimental result is in a good agreement with the numerical analysis. The heat transfer coefficient increases as the Reynolds number increases, while the thermal wake function calculated for each row decreases as the Reynolds number increases. In addition, it is found that Nu-Re correlation equation is Identical to the previous studies, and the empirical correlation equation between the thermal wake function and Re is presented.

Study on Flexible Airfoil in Low Reynolds Number Flow Field (저 레이놀즈 수 유동장에서의 유연 익형에 대한 연구)

  • Gwon, Gi Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In the study, aeroelastic behaviors and aerodynamic performances of flexible airfoil in low Reynolds number environment are evaluated. To facilitate the present study, flexible airfoil in modeled through attaching massless membrane in portion of the upper CLARK-Y airfoil surface, which is often proposed low Reynolds number airfoil. The behavior of membrane in governed by aerodynamic forces and membrane equilibrium equation. Nondimensional parameter deducted by nondimensionalizing the membrane equilibrium equation, which represents the interaction between fluid and membrane has a great influence on membrane aeroelastic behavior. Changing the starting point of the membrane is conducted on aerodynamic performances. As a result, the value of nondimensional parameter should almost linearly increase according to moving the starting point of the membrane surface toward the trailing edge.

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

사판식 유압 피스톤 펌프의 피스톤과 실린더 사이의 윤활해석

  • 박태조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.643-647
    • /
    • 1995
  • The thin film flow in the clearance between the piston and cylinder is numerically analyzed to study the lubrication characteristics of the Swashplate type axial piston pumps. The Reynolds equation is solved using a finite difference method under Reynolds boundarycondition. The pressure distributions in the clearance and the lateral forces acting on the piston are compared for various operating conditions. Tilting and rotation of the piston in the cylinder gore are highly affect the lubrication characteristics, therefore, additional analysis are required.

Analysis of Cylindrical Hydrostatic Bearing (진원형 정수압 베어링의 해석)

  • 문호지;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.11a
    • /
    • pp.94-99
    • /
    • 1989
  • This paper analyzes file stiffness, damping coefficient, friction force and flow coefficient of externally pressurized oil journal beating, including the effect of journal rotation according to the Sommerfeld number. This paper assumed that the oil in the whole pocket has constant pressure, and that the oil in the whole bearing region has constant viscosity, temperature and density. Reynolds equation is derived from Nuvier - Stokes equation and continuity equation. And solved bearing pressure by ADI method for whole bearing region and fitted with out flow rate of pocket region. The model for numerical simulation is hydro - static oil journal bearing for high-speed, high-accuracy lathe spindle.

  • PDF

극소공기막을 갖는 공기윤활 슬라이더 베어링의 윤활해석에 관한 연구

  • Hwang, Pyung;Yang, Seung-Han
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.94-98
    • /
    • 1996
  • The static characteristics of air-lubricated slider bearing were performed using direct numerical method. The equations of motion of slider bearing are solved simultaneously with the Reynolds equation for three degrees of freedom. The molecular rarefaction effect is considered. The models implemented include the first-order slip, the second-order slip, and the Boltzmann equation model derived by Fukui and Kaneko(FK model)

  • PDF

Theoretical Analysis of Sealless Piston for Hydraulic Cylinders (시일이 없는 유압 실린더용 피스톤의 이론해석)

  • Park, T.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a theoretical analysis is carried out to study the lubrication characteristics of sealless piston for hydraulic cylinders. The analytical pressure distributions are obtained solving one-dimensional Reynolds equation with partially tapered moving piston. Nearly analytical expressions for lateral forces acting on the piston and leakage flow rate through the clearance are also presented. Using the analytical expressions, the influence of design parameters on lubrication characteristics can be easily evaluated without numerical analysis. Composite-shaped piston which minimizes the leakage flow rate is the optimum in sealless piston for hydraulic cylinder.

  • PDF

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.