• 제목/요약/키워드: reversible reaction

검색결과 207건 처리시간 0.029초

ABSOLUTELY STABLE EXPLICIT SCHEMES FOR REACTION SYSTEMS

  • Lee, Chang-Ock;Leem, Chae-Hun;Park, Eun-Hee;Youm, Jae-Boum
    • 대한수학회지
    • /
    • 제47권1호
    • /
    • pp.165-187
    • /
    • 2010
  • We introduce two numerical schemes for solving a system of ordinary differential equations which characterizes several kinds of linear reactions and diffusion from biochemistry, physiology, etc. The methods consist of sequential applications of the simple exact solver for a reversible reaction. We prove absolute stability and convergence of the proposed explicit methods. One is of first order and the other is of second order. Numerical results are included.

Mo-Thiocyanate (V) 錯物의 電極還元 反應에 關한 硏究 (A Polarographic Study of Mo-thiocyanate (V) Complex)

  • 오상오;박유철
    • 대한화학회지
    • /
    • 제14권2호
    • /
    • pp.141-145
    • /
    • 1970
  • The reduction of Mo-thiocyanate (V) complex on dropping mercury electrode has been studied at ionic strength 0.6 with pH less than 2.3. D-C polarogram obtained from acidic solutions are reversible, diffusion controlled current. The electrode reaction of Mo-thiocyanate(V) may be represented as follows. $MoO(SCN)_3\;+\;2H^+\;+\;2e\;{\to}\;Mo(SCN)_2{^+}\;+\;H_2O\;+\;SCN^-$From this reaction, the half wave potential assumed to be $E_{1/2}\;=\;E_0'\;-\;0.059\;pH\;-\;0.03\;log{\;frac{[Mo(SCN)_2{^+}][SCN^-]}{[MoO(SCN)_3]}}$Considering the dissociation of this complex, however, it was estimated that the electrode reaction may be written by. $MoO^{+3}\;+\;3SCN^-\;+\;2H^+\;+\;2e\;{\to}\;Mo(SCN)_2{^+}\;+\;SCN^-\;+\;H_2O$.

  • PDF

Phosphorolytic Pathway in Cellulose Degradation

  • Kitaoka, Motomitsu
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.179-182
    • /
    • 2001
  • Two intracellular enzymes, cellobiose phosphorylase (CBP) and cellodextrin phosphorylase (CDP) are involved in the phosphorolytic pathway in cellulose degradation. Those enzymes are considered to be useful in syntheses of oligosaccharides because the reactions are reversible. CBP from Cellvibrio gilvus and CDP from Clostridium thermocellum YM-4 were cloned and over-expressed in Escharichia coli. Both the enzyme reactions showed ordered bi bi mechanism. Acceptor specificity of CBP in the reverse reaction was determined. Several $\beta$-l,4-glucosyl disaccharides were synthesized by using the reaction. A new substrate inhibition pattern, competitive substrate inhibition, was also found in the reverse reaction of CBP Cellobiose was produced from sucrose at a high yield by a combined action of three enzymes including CBP

  • PDF

Effects of Nitric Oxide Modulating Drugs on Acrosome Reaction in Mouse Spermatozoa

  • Gye, Myung Chan
    • Animal cells and systems
    • /
    • 제4권2호
    • /
    • pp.151-155
    • /
    • 2000
  • Nitric oxide (NO) is a reactive free radical which plays important roles in animal physiology. To investigate involvement of NO in acrosome reaction (AR), effects of drugs which modulate the intracellular NO level were examined in mouse spermatozoa. N (G)-nitro-L-arginine (L-NA), a potent inhibitor of NO synthesis, decreased AR in a reversible manner, On the other hand, sodium nitroprusside (SNP), an NO generating agent, increased spontaneous AR. Preincubation of sperm in the presence of L-NA potentiated AR after sperm transfer into plain- or SNP-media. Methylene blue, a NO scavenging agent, decreased spontaneous AR. Taken together, it is concluded that NO positively controls AR.

  • PDF

Probing of Electrochemical Reactions for Battery Applications by Atomic Force Microscopy

  • 김윤석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.98.2-98.2
    • /
    • 2013
  • Electrochemical phenomena underpin a broad spectrum of energy, chemical, and information technologies such as resistive memories and secondary batteries. The optimization of functionalities in these devices requires understanding electrochemical mechanisms on the nanoscale. Even though the nanoscale electrochemical phenomena have been studied by electron microscopies, these methods are limited for analyzing dynamic electrochemical behavior and there is still lack of information on the nanoscale electrochemical mechanisms. The alternative way can be an atomic force microscopy (AFM) because AFM allows nanoscale measurements and, furthermore, electrochemical reaction can be controlled by an application of electric field through AFM tip. Here, I will summarize recent studies to probe nanoscale electrochemical reaction in battery applications by AFM. In particular, we have recently developed electromechanical based AFM techniques for exploring reversible and irreversible electrochemical phenomena on the nanoscale. The present work suggests new strategies to explore fundamental electrochemical mechanisms using the AFM approach and eventually will provide a powerful paradigm for probing spatially resolved electrochemical information for energy applications.

  • PDF

Mechanism and Products During the Homolytic Addition of CCl$_4$ and Cl$_3$CBr to $\beta$-Halostyrenes

  • Kim Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제1권2호
    • /
    • pp.45-49
    • /
    • 1980
  • During the homolytic reactions of $CCl_4$ or $Cl_3CBr with ${\beta}-halo^1$-styrenes,$\beta$-haloradicals are key intermediates. They are to be stabilized via three pathways; $\beta$-cleavage, halogen transfer and telomerization. The three reaction paths are delicately controlled by the energetics of their formation and stabilization. When the formation of a $\beta$-haloradical is accompanied by considerable excess of energy from an exothermic reaction, $\beta$ -cleavage is often dominant over the halogen transfer. On the other hand, if the radical forms via a reversible reaction, two processes become competitive. $\beta$-Eliminated bromine atoms from ${\beta}$ -bromoradicals generate $Br_2$ via $Cl_3CBr + {\cdot}Br {\leftrightarrow} Br_2 + {CCl_3}{\cdot}{Br_2}$ may act as a better scavenger than Cl3CBr for the ${\beta}$-bromoradicals. Different reactivities of chlorine, bromine and trichloromethyl radicals towards olefinic pi-bond are clarified in terms of the beat content of the addition reactions.

Development of cobalt encased in nitrogen and sulfur co-doped carbon nanotube for non-precious metal catalyst toward oxygen reduction reaction

  • Kim, Tae-Hyun;Sang, Byoung-In;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.499-503
    • /
    • 2018
  • In this paper, cobalt embedded in nitrogen and sulfur co-doped carbon nanotubes (CoNSTs) were synthesized for oxygen reduction reaction (ORR) catalysts. The CoNSTs were prepared through a facile heat treatment method without any templates. Different amounts of the metal salt were employed to examine the physicochemical and electrochemical properties of the CoNSTs. The CoNSTs showed the bamboo-like tube morphology with the encased Co nanoparticles in the tubes. Through the x-ray photoelectron spectroscopy analysis, the catalysts exhibited different chemical states of the nitrogen and sulfur species. As a result, the CoNST performed high activity toward the ORR in an acidic condition with the onset potential of 0.863 V (vs. reversible hydrogen electrode). It was clearly demonstrated from the electrochemical characterizations that the quality of the nitrogen and sulfur species significantly influences the ORR activity rather than the total amount of the dopants.

효소활성에 미치는 니코틴의 영향 (Effect of Nicotine on the Various Enzymes' Activity)

  • 이미자;이상하
    • 한국연초학회지
    • /
    • 제9권2호
    • /
    • pp.69-75
    • /
    • 1987
  • Nicotine, the main alkaloid of tobacco, showed different effect according to the enzyme. Among investigated enzymes, protease was inactivated remarkably by nicotine and the mode of inhibition was examined. $\alpha$-amylase and $\beta$-amylase were not affected, and cellulase and glucoamylase were inactivated partially when the concentration of it was over 1.0% , but protease was inhibited powerfully by nicotine The inhibition of protease by nicotine was performed almost in the initial stage of reaction, and was not so much affected by temperature, and was reversible. The inhibition type of protease by nicotine appeared as a Mixed-type inhibition.

  • PDF

Nonlinear Model Based Control of Two-Product Reactive Distillation Column

  • Lee, In-Beum;Han, Myung-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.50.3-50
    • /
    • 2001
  • Nonlinear feedback control scheme for reactive distillation column has been proposed. The proposed control scheme is derived in the framework of Nonlinear Internal Model Control. The product compositions and liquid and vapor flow rates in sections of the reactive distillation column are estimated from selected tray temperature measurements by an observer. The control scheme is applied to example reactive distillation column in which two products are produced in a single column and the reversible reaction A + B = C + D occurs. The relative volatilities are favorable for reactive distillation so that the reactants are intermediated boilers between the light product C and the heavy product D. Ideal physical properties, kinetics and ...

  • PDF

Search for acetaldehyde trapping agents by using alcohol dehydrogenase assay

  • Lee, Hyun-Joo;Lee, Kang-Man
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.160.3-161
    • /
    • 2003
  • Aldehyde and active form of free oxygen produced in alcohol metabolism in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and cytochrome P4502E1. Alcohol dehydrogenase is reversible in alcohol metabolism. To block the backward reaction and enhance alcohol oxidation, acetaldehyde trapping agents were assayed. The assay was carried out by measuring decreasing NADH at 340nm, using acetaldcehyde and NADH as substrate and coenzyme respectively. (omitted)

  • PDF