• Title/Summary/Keyword: reversible inhibitor

Search Result 77, Processing Time 0.028 seconds

Dose-Independent Pharmacokinetics of a New Reversible Proton Pump Inhibitor, KR-60436, after Intravenous and Oral Administration to Rats: Gastrointestinal First-Pass Effect

  • Yu, Su-Yeon;Shin, Jee-Hyun;Bae, Soo-Kyung;Kim, Eun-Jung;Kim, Yoon-Gyoon;Kim, Sun-Ok;Lee, Dong-Ha;Lim, Hong;Lee, Myung-Gull
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.311.1-311.1
    • /
    • 2003
  • Dose-independent pharmacokinetic parameters of KR-60436, a new proton pump inhibitor, were evaluated after an intravenous, iv (5, 10, and 20 mg/kg) and an oral (20, 50, and 100 mg/kg) administration to rats. The hepatic, gastric, and intestinal first-pass effects were also measured after iv, intraportal (ip), intragastric (ig), and intraduodenal (id) administration at a dose of 20 mg/kg to rats. (omitted)

  • PDF

Inhibitory mechanism of a newly synthesised proton pump inhibitor, YJA20379-8

  • Sang K. Sohn;Man S. Chang;Young K. Chung;Kim, Kyu B.;Tae W. Woo;Kim, Sung K.;Park, Wahn S.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.100-100
    • /
    • 1997
  • To treat peptic ulcer diseases, many potent proton pump inhibitors have been developed for suppressing the gastric acid secretion in clinical patients. However, most of these agents have common irreversible mechanisms against H$\^$+/, K$\^$+/-ATPase which might be the cause of hypergastrinemia and ECL cell hyperplasia. Therefore, the development of new reversible inhibitors is prompted. In this study, we investigated the inhibitory mechanism of a newly synthesized proton pump inhibitor, YJA20379-8 using lyophilized hog gastric microsomes. YJA20379-8 inhibited K$\^$+/-stimulated H$\^$+/K$\^$+/-ATPase activity uncompetitively with respect to K$\^$+/, and in the other hand, showed competitive inhibitory pattern with ATP, respectively. From these data, we suggest that YJA20379-8 may be a proton pump inhibitor with a new inhibitory mechanism.

  • PDF

Numerical Analysis of Enzyme Kinetics for Undergraduate Education in Engineering (공학분야 학부교육용 효소반응속도식의 수치해석)

  • Kim, Jae-Seok;Kim, Jae-Yoon;Lee, Jae-Heung
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An enzyme-catalized reaction is usually characterized by a very large increase in the rate and high specificity. Kinetics of simple enzyme-catalized reactions are often referred to as Michelis-Menten kinetics. A chemical that interferes with an enzyme's activity is called inhibitor. There are two types of enzyme inhibitions (viz. reversible and irreversible). If an inhibitor attaches to the enzyme with weak bonds, such as hydrogen bonds, the inhibition is usually reversible. Many enzyme reactions are also inhibited reversibly by their corresponding products. The rate of substrate disappearance together with the rate of product formation may be written by nonlinear differential equations. In the present study, numerical analyses of simple enzyme kinetics and inhibited enzyme kinetics are reported for the purpose of undergraduate education in engineering.

  • PDF

Kinetic Studies on the Effects of Divalent Cations on the ATPase Activity of the Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle (골격근 小胞體의 ATPase活性에 미치는 二價金屬이온의 영향)

  • Park, Young-Soon;Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.23 no.3
    • /
    • pp.137-148
    • /
    • 1980
  • The effects of divalent cations, $Hg^{2+}, Cu^{2+}, Pb^{2+}, Cd^{2+}$, and $Mn^{2+}$ on the total ATPase activity of the fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were investigated. The inhibitory effects of the cations on the enzyme activity increased as the concentrations of the ions increased with the order of efficiency of $Hg^{2+}$ > $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Mn^{2+}$ in the concentration range between 10 and 500$\mu$M. The 50% inhibition for each ion was almost identical with the inhibition constant (Ki) value for each ion. The Ki's were 10, 30 130, and 350$\mu$M for $Hg^{2+}, Cu^{2+}, Pb^{2+}, and Cd^{2+}$, respectively. $Mn^{2+}$ seemed to be an activator at lower concentrations and an inhibitor at higher concentrations. The presence of the cations did not change the Km values, suggesting that the ions act as a reversible noncompetitive inhibitor on the FSR ATPase. The energy of activation of the enzyme was aproximately 19 Kcal/mole. The presence of the ions decreased the value slightly. A possible mechanism for the reversible noncompetitive inhibitory effect of the cations was discussed.

  • PDF

Chromenone Derivatives as Monoamine Oxidase Inhibitors from Marine-Derived MAR4 Clade Streptomyces sp. CNQ-031

  • Oh, Jong Min;Lee, Chaeyoung;Nam, Sang-Jip;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1022-1027
    • /
    • 2021
  • Three compounds were isolated from marine-derived Streptomyces sp. CNQ-031, and their inhibitory activities against monoamine oxidases (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase (BACE-1) were evaluated. Compound 1 (5,7-dihydroxy-2-isopropyl-4H-chromen-4-one) was a potent and selective inhibitor of MAO-A, with a 50% inhibitory concentration (IC50) of 2.70 µM and a selectivity index (SI) of 10.0 versus MAO-B. Compound 2 [5,7-dihydroxy-2-(1-methylpropyl)-4H-chromen-4-one] was a potent and low-selective inhibitor of MAO-B, with an IC50 of 3.42 µM and an SI value of 2.02 versus MAO-A. Compound 3 (1-methoxyphenazine) did not inhibit MAO-A or MAO-B. All three compounds showed little inhibitory activity against AChE, BChE, and BACE-1. The Ki value of compound 1 for MAO-A was 0.94 ± 0.28 µM, and the Ki values of compound 2 for MAO-A and MAO-B were 3.57 ± 0.60 and 1.89 ± 0.014 µM, respectively, with competitive inhibition. The 1-methylpropyl group in compound 2 increased the MAO-B inhibitory activity compared with the isopropyl group in compound 1. Inhibition of MAO-A and MAO-B by compounds 1 and 2 was recovered by dialysis experiments. These results suggest that compounds 1 and 2 are reversible, competitive inhibitors of MAOs and can be considered potential therapies for neurological disorders such as depression and Alzheimer's disease.

The Slow and Tight Binding of MR-387A to Aminopeptidase N

  • CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE;SU-IL KIM;YUNG-HEE KHO
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.250-254
    • /
    • 1996
  • MR-387A [(2S, 3R)-2-hydroxy-3-amino-4-phenylbutanoyl-L-valyl-L-prolyl-(2, 4-trans)- L-4-hydroxy-proline] reversibly inhibits aminopeptidase N (BC 3.4.11.2) in a process that is remarkable for its unusual degree of time dependence. The time required to inactivate the enzyme by 50$%$ ($t_{1/2}$) for establishing steady-state levels of $EI^*$complex was approximately 5 minutes. This indicates that the inhibition is a slow-binding process. In dissociation experiments of $EI^*$ complex, enzymic activity was regained slowly in a quadratic equation, indicating that the inhibition of aminopeptidase N by MR-387A is tight-binding and reversible. Thus, the binding of MR-387A by aminopeptidase N is slow and tight, with $K_{i}$ (for initial collision complex, EI) and $K_i{^*}$ (for final tightened complex, $EI^*$) of $2.2\times10^{-8}$ M (from Lineweaver-Burk plot) and $4.4\times10^{-10}$ M (from rate constants), respectively. These data indicate that MR-387A and aminopeptidase N are bound approximately 200-fold more tightly in the final $EI^*$complex than in the initial collision EI complex.

  • PDF

Direct Block of Cloned $K^+$ Channels, Kv1.5 and Kv1.3, by Cyclosporin A, Independent of Calcineurin Inhibition

  • Choi, Bok-Hee;Hahn, Sang-June
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.353-361
    • /
    • 2005
  • The interaction of cyclosporine A (CsA), an immunosuppressant, with rat brain Kv1.5 (Kv1.5) channels, which were stably expressed in Chinese hamster ovary cells, was investigated using the whole-cell patch-clamp technique. CsA reversibly blocked Kv1.5 currents at +50 mV in a reversible concentrationdependent manner with an apparent $IC_{50}$ of 1.0μM. Other calcineurin inhibitors (cypermethrin, autoinhibitory peptide) had no effect on Kv1.5 and did not prevent the inhibitory effect of CsA. Fast application of CsA led to a rapid and reversible block of Kv1.5, and the onset time constants of the CsA-induced block were decreased in a concentration-dependent manner. The CsA-induced block of Kv1.5 channels was voltage-dependent, with a steep increase over the voltage range of channel opening. However, the block exhibited voltage independence over the voltage range in which channels were fully activated. The rate constants for association and dissociation of CsA were $7.0{\mu}M{-1}s^{-1}$ and $8.1s^{-1}$, respectively. CsA slowed the deactivation time course, resulting in a tail crossover phenomenon. Block of Kv1.5 by CsA was use-dependent. CsA also blocked Kv1.3 currents at +50 mV in a reversible concentration-dependent manner with an apparent $IC_{50}$ of $1.1{\mu}M$. The same effects of CsA on Kv1.3 were also observed in excised inside-out patches when applied to the internal surface of the membrane. The present results suggest that CsA acts directly on Kv1.5 currents as an open-channel blocker, independently of the effects of CsA on calcineurin activity.

Effects of Phloretin, Cytochalasin B, and D-Fructose on 2-deoxy-D-Glucose Transport of the Glucose Transport System Present in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2006
  • The baculovirus expression system is a powerful method for producing large amounts of the human erythrocyte-type glucose transport protein, heterologously. Characterization of the expressed protein is expected to show its ability to transport sugars directly. To achieve this, it is a prerequisite to know the properties of the endogenous sugar transport system in Spodoptera frugiperda Clone 21 (Sf21) cells, which are commonly employed as a host permissive cell line to support the baculovirus replication. The Sf21 cells can grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transport system. However, unlike the human glucose transport protein that has a broad substrate and inhibitor specificity, very little is known about the nature of the endogenous sugar transport system in Sf21 cells. In order to characterize further the inhibitor recognition properties of the Sf21 cell transporter, the ability of phloretin, cytochalasin B and D-fructose to inhibit 2-deoxy-D-glucose (2dGlc) transport was examined by measuring inhibition constants $(K_i)$. The $K_i's$ for reversible inhibitors were determined from plots of uptake versus inhibitor concentration. The 2dGlc transport in the Sf21 cells was very potently inhibited by phloretin, the aglucone of phlorizin with a $K_i$ similar to the value of about $2{\mu}M$ reported for inhibition of glucose transport in human erythrocytes. However, the Sf21 cell transport system was found to differ from the human transport protein in being much less sensitive to inhibition by cytochalasin B (apparent $K_i$ approximately $10\;{\mu}M$). In contrast, It is reported that the inhibitor binds the human erythrocyte counterpart with a $K_d$ of approximately $0.12\;{\mu}M$. Interestingly, the Sf21 glucose transport system also appeared to have high affinity for D-fructose with a $K_i$ of approximately 5mM, contrasting the reported $K_m$ of the human erythrocyte transport protein for the ketose of 1.5M.

  • PDF

Adverse Effect of Newer Antidepressant : Nausea and Vomiting, Weight Gain, Sexual Dysfunction - Mechanisms, Epidemiology, and Pharmacological Management - (새로운 항우울제의 부작용: 오심 및 구토, 체중증가, 성 기능장애 - 발병기전, 역학, 약물학적 처치를 중심으로 -)

  • Lee, Kyung-Kyu
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.21 no.2
    • /
    • pp.81-92
    • /
    • 2013
  • Newer antidepressants are commonly used in clinical practice to treat psychiatric disorder and psychosomatic disorder including chronic pain syndrome, fibromyalgia, headache. However there are many unexpected adverse effects of these drugs such as nausea and vomiting, weight gain, sexual dysfunction. These are 3 most well-recognized common adverse effects of newer antidepressant and are most common causes of treatment failure. I reviewed mechanisms, epidemiology, and pharmacological management of these adverse effects of newer antidepressants. In this paper, newer antidepressants include selective serotonin reuptake inhibitor(fluoxetine, fluvoxamine, citalopram, escitalopram, sertraline, paroxetine), serotonin norepinephrine reuptake inhibitor(venlafaxine, duloxetine), norepinephrine and dopamine reuptake inhibitor(bupropion), noradrenergic and specific serotonergic antidepressant(mirtazapine), and reversible inhibitor of MAO-A(moclobemide). I suggest that psychiatrists and clinicians in the psychosomatic field should know mechanisms, epidemiology, and management of these common and well-recognized adverse effects of newer antidepressants. Therefore it will be helpful to recognize easily and treat well for patients with psychiatric disorder and psychosomatic disorder using newer antidepressants.

  • PDF

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.363-369
    • /
    • 2007
  • Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.