• 제목/요약/키워드: reversed lateral load test

검색결과 31건 처리시간 0.019초

High-strength RC columns subjected to high-axial and increasing cyclic lateral loads

  • Bhayusukma, Muhammad Y.;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.779-796
    • /
    • 2014
  • This experimental investigation was conducted to examine the behavior and response of high-strength material (HSM) reinforced concrete (RC) columns under combined high-axial and cyclic-increasing lateral loads. All the columns use high-strength concrete ($f_c{^{\prime}}$=100MPa) and high-yield strength steel ($f_y$=685MPa and $f_y$=785MPa) for both longitudinal and transverse reinforcements. A total of four full-scale HSM columns with amount of transverse reinforcement equal to 100% more than that required by earthquake resistant design provisions of ACI-318 were tested. The key differences among those four columns are the spacing and configuration of transverse reinforcements. Two different constant axial loads, i.e. 60% and 30% of column axial load capacity, were combined with cyclically-increasing lateral loads to impose reversed curvatures in the columns. Test results show that columns under 30% of axial load capacity behaved much more ductile and had higher lateral deformational capacity compared to columns under the 60% of axial load capacity. The columns using closer transverse reinforcement spacing have slightly higher ductility than columns with larger spacing.

좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험 (Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP)

  • 이한선;이경보;황성준;조창석
    • 콘크리트학회논문집
    • /
    • 제23권5호
    • /
    • pp.683-692
    • /
    • 2011
  • 필로티형 저층 RC 집합주택에서는 지진 발생 시 필로티층에 손상이 집중된다. 따라서, 이 연구에서는 필로티층의 비틀림과 X, Y방향의 강도와 강성을 증가시키기 위해 좌굴방지가새를 설치함과 동시에, 과도한 변형과 축력의 변동이 발생하는 외부기둥의 연성과 축성능, 전단 성능을 증가시키기 위해 외부기둥을 FRP로 보강하였다. 이와 같은 보강 효과를 실험적으로 검증하기 위해 순수 골조와 FRP와 좌굴방지가새로 보강된 골조에 대한 반복 횡하중 실험을 수행하였다. 실험 결과 항복강도(43.2 kN)는 설계항복강도(30 kN)와 압축부의 강도 증가 때문에 차이가 나타났고, 강성(11.6 kN/mm)은 설계강성(24.2 kN/mm)에 비하여 절반의 값을 가졌다. 이러한 강성의 차이는 골조와 가새의 접합부 사이의 미끄러짐과 기초의 회전 및 횡변위가 원인으로 나타났다. 보강된 골조의 에너지 흡수 능력은 순수 골조에 비해 7.5배 향상되었다. 기초당 설치된 로드셀의 개수를 2개에서 1개로 변화시키면, 횡강성이 11.6 kN/mm에서 6 kN/mm로 줄어 들었고, 이것은 단지 순수 골조의 강성에 3배에 지나지 않는다(2.1 kN/mm).

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

반복 횡하중을 받는 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (An Experimental Study on Seismic Performance of Reinforced Concrete Bridge Columns under Lateral Cyclic Load)

  • 이진옥;윤현도;황선경;류효진;나홍성;이경준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.161-164
    • /
    • 2003
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement ($P_s$ =0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/$P_o$). Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/$P_o$) less than 0.2, the ratio of $M_{max}$ over $M_{aci}$, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.

비내진 상세를 가진 저층 R.C조의 외부접합부 거동 (Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail)

  • 김영문;기찬호;장준호;이세웅;김상대
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames

  • Duran, Burak;Tunaboyu, Onur;Kaplan, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.233-244
    • /
    • 2018
  • This study aims at evaluating the performance of repairing technique with CFRPs in recovering cyclic performance of damaged columns in flexure in terms of structural response parameters such as strength, dissipated energy, stiffness degradation. A 2/3 scaled substandard reinforced concrete frame was constructed to represent the substandard RC buildings especially in developing countries. These substandard buildings have several structural deficiencies such as strong beam-weak column phenomenon, improper reinforcement detailing and poor material properties. Flexural plastic hinges occurred at the columns ends after testing the substandard specimen under both constant axial load and reversed cyclic lateral loading. Afterwards, the damaged columns were externally wrapped with CFRP sheets both in transverse and longitudinal directions and then retested under the same loading protocol. In addition, ambient vibration measurements were taken from the undamaged, damaged and the repaired specimens at each structural repair steps to identify the effectiveness of each repairing step by monitoring the change in the natural frequencies of the tested specimen. The ambient vibration test results showed that the applied repairing technique with external CFRP wrapping was proved to recover stiffness of the pre-damaged specimen. Moreover, the lateral load capacity of the pre-damaged substandard RC frame was restored with externally bonded CFRP sheets.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

Strengthening of deficient RC frames with high strength concrete panels: an experimental study

  • Baran, Mehmet;Susoy, Melih;Tankut, Tugrul
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.177-196
    • /
    • 2011
  • An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic lateral loads. Test frames were designed and constructed with common deficiencies observed in practice. Four different panel types were used for strengthening. Test results showed that both strength and stiffness of the frames were significantly improved by the introduction of PC panels. Experimental results were compared with the analytical approaches suggested by the authors.

Seismic behavior of steel tube reinforced concrete bridge columns

  • Tian, Tian;Qiu, Wen-liang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.63-71
    • /
    • 2018
  • This paper reports an experimental study that was accomplished to assess the seismic behavior of steel tube reinforced concrete bridge columns (SBCs). The motivation of this study was to verify a supposition that the core steel tube may be terminated at a rational position in the column to minimize the material cost while maintaining the seismic behavior of this composite column. Four SBC specimens were tested under combined constant axial load and cyclic reversed lateral loads. The unique variable in the test matrix was the core steel tube embedment length, which ranged from 1/3 to 3/3 of the column effective height. It is observed that SBCs showed two distinctly different failure patterns, namely brittle shear failure and ductile flexural failure. Tests results indicate that the hysteretic responses of SBCs were susceptible to the core steel tube embedment length. With the increase of this structural parameter, the lateral strength of SBC was progressively improved; the deformability and ductility, however, exhibited a tendency of first increase and then decrease. It is also found that in addition to maintained the rate of stiffness degradation and cumulative energy dissipation basically unchanged, both the ductility and deformability of SBC were significantly improved when the core steel tube was terminated at the mid-height of the column, and these were the most unexpected benefits accompanied with material cost reduction.