• Title/Summary/Keyword: return period

Search Result 1,000, Processing Time 0.032 seconds

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period (시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Compared with buildings that have already been constructed, buildings under construction may be more vulnerable to such natural disasters as earthquakes because the concrete strength is not yet sufficient. Currently, Korean design standards present minimum performance targets for each seismic grade of buildings, but the seismic load for design is based on a return period of 2400 years. However, because the construction period of the building is much shorter than the period of use of the building, the application of the earthquake return period of 2400 years to buildings under construction may be excessive. Therefore, in this study, a construction stage model of buildings with 5, 15, 25, and 60 floors was created to analyze earthquake loads during construction of residential reinforced concrete (RC) buildings. The structural stability was confirmed by applying reduced seismic loads according to the return period. As a result, the structural stability was checked for an earthquake of the return period selected according to the construction period, and the earthquake return period that can secure structural safety according to the size of the building was confirmed.

Estimation of Wind Speeds for Return Period in Cellularized District of Basan by the Recent Meteorological Data (최근 기상 자료에 의한 부산의 세분화된 지역별 재현기대 풍속 산정)

  • An, Jae-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.158-163
    • /
    • 2012
  • This study is concerned with the estimation of wind speeds for return period in cellularized district of Busan by the recent meteorological data. Recently standard of the wind load in Busan area is determined by using meteorological wind speed data which is observed on Automated Synoptic Observing System(ASOS) only. Applying the existing basic wind speed that is 40m/s to the construction design of Busan area is inefficient. Because the wind speeds of Busan area show different amounts depend on the location of cellularized district. This research analyze the observed data of wind speeds of cellularized district in Busan based on Automate Weather System(AWA). In addition that we compute regional wind speeds for return period by using Gumbel distribution and study and compare with the existing basic wind speeds after evaluating appropriateness by Hazen's plot method.

The conditional risk probability-based seawall height design method

  • Yang, Xing;Hu, Xiaodong;Li, Zhiqing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1007-1019
    • /
    • 2015
  • The determination of the required seawall height is usually based on the combination of wind speed (or wave height) and still water level according to a specified return period, e.g., 50-year return period wind speed and 50-year return period still water level. In reality, the two variables are be partially correlated. This may be lead to over-design (costs) of seawall structures. The above-mentioned return period for the design of a seawall depends on economy, society and natural environment in the region. This means a specified risk level of overtopping or damage of a seawall structure is usually allowed. The aim of this paper is to present a conditional risk probability-based seawall height design method which incorporates the correlation of the two variables. For purposes of demonstration, the wind speeds and water levels collected from Jiangsu of China are analyzed. The results show this method can improve seawall height design accuracy.

Proposal of Return Period and Basic Wind Speed Map to Estimate Wind Loads for Strength Design in Korea (강도설계용 풍하중 평가를 위한 재현기간과 기본풍속지도의 제안)

  • Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Strength design wind loads for the wind resistance design of structures shall be evaluated by the product of wind loads calculated based on the basic wind speed with 100 years return period and the wind load factor 1.3 specified in the provisions of load combinations in Korean Building Code (KBC) 2016. It may be sure that the wind load factor 1.3 in KBC(2016) had not been determined by probabilistic method or empirical method using meteorological wind speed data in Korea. In this paper, wind load factors were evaluated by probabilistic method and empirical method. The annual maximum 10 minutes mean wind speed data at 69 meteorological stations during past 40 years from 1973 to 2012 were selected for this evaluation. From the comparison of the results of those two method, it can be found that the mean values of wind load factors calculated both probability based method and empirical based method were similar at all meteorological stations. When target level of reliability index is set up 2.5, the mean value of wind load factors for all regions should be presented about 1.35. When target level of reliability index is set up 3.0, wind load factor should be presented about 1.46. By using the relationship between importance factor(conversion factor for return period) and wind load factor, the return periods for strength design were estimated and expected wind speeds of all regions accounting for strength design were proposed. It can be found that return period to estimate wind loads for strength design should be 500 years and 800 years in according to target level of reliability index 2.5 and 3.0, respectively. The 500 years basic wind speed map for strength design was suggested and it can be used with a wind load factor 1.0.

Probabilistic Analysis of Independent Storm Events: 2. Return Periods of Storm Events (독립호우사상의 확률론적 해석 : 2. 호우사상의 재현기간)

  • Yoo, Chul-Sang;Park, Min-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.137-146
    • /
    • 2011
  • In this study, annual maximum storm events are evaluated by applying the bivariate extremal distribution. Rainfall quantiles of probabilistic storm event are calculated using OR case joint return period, AND case joint return period and interval conditional joint return period. The difference between each of three joint return periods was explained by the quadrant which shows probability calculation concept in the bivariate frequency analysis. Rainfall quantiles under AND case joint return periods are similar to rainfall depths in the univariate frequency analysis. The probabilistic storm events overcome the primary limitation of conventional univariate frequency analysis. The application of these storm event analysis provides a simple, statistically efficient means of characterizing frequency of extreme storm event.

A Study of Statistical Properties of Waves in the Sea Area of Pohang (포항해역에서의 파랑의 통계적 특성에 대한 연구)

  • 안용호;김도영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.216-221
    • /
    • 2001
  • In this paper, statistical properties of waves in the sea area of Pohang, Korea are examined absed on 1998-1999's wave data from directional wave buoy which is located Pohang(Janggigog). Wave data aquisition rate, monthly maximium, minimum and mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated.

  • PDF

COVID-19 Pandemic and the Reaction of Asian Stock Markets: Empirical Evidence from Saudi Arabia

  • SHAIK, Abdul Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.1-7
    • /
    • 2021
  • The study examines the influence of COVID-19 on the stock market returns of Saudi Arabia. The data was analyzed through event study methodology using daily price data of Tadawul All Share Index (TASI). The study examines the behavior pattern of the Saudi Arabian stock market in different phases during the event period by selecting six-event windows with a range of 10 days. The results report a negative Abnormal Return (AR) of -0.003 on the event date, while the abnormal returns reversed the next day to 0.005 positively. The result of Cumulative Abnormal Return (CAR) is negative and significant at the 1 percent level in all the six-event windows starting from the event date to day 59 after the event for the TASI index. Even though the influence of the COVID-19 pandemic decreased after 30 days of the event date, it increased during the last ten days of the event window. The stock market volatility of Saudi Arabia increased during the post-event period compared to the pre-event period with a negative mean return of -0.326 and a greater standard deviation. In a conclusion, the study found a significant influence of the COVID-19 pandemic on the stock market returns of TASI.

Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model (SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Park, Dae Geun;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

A Review for Caluculation of the Formula for Probable Rainfall Intensities Following Return Periods in the Hydrological Statistics. -On Cheong-Ju district- (재현기간별 확률 향우강도식 산정에 관한 수문통계학적 고찰-청주 지방을 중심으로-)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3848-3859
    • /
    • 1975
  • The author attempted to find most suitable formulas for probable rainfall intensities with analysis and consideration for characteristics of rainfall intensities according to the short and long period return periods at Cheong-Joo district. Above mentioned formulas induced by this study can be contributed to the credibility of runoff estimation for urban sewerage system, drainage works in small catchment area and embankment works in the rivers. The results of this study are summarized as follows: 1 Calculation values by Gumbel-Chow method were selected as a mean values for the calculation of probable rainfall intensities according to return periods in the short period. 2. Calculations for probable rainfall intensities for long period are based upon to the result by Iwai's method. Talbot type, {{{{I= {a} over {t+b} }}}} is confirmed as a most suitable formula for probable rainfall intensities among calculation methods in the short periods at Cheong-Joo district. 4. Specific coefficient method, I24=RN24${\beta}$N was selected as a means of calculation for suitable formulas of probable rainfall intensities according to return periods in case of long period. 5. Runoff estimation with high credibility by rational formula can be anticipated by establishment for the most suitable probable rainfall intensities at Cheong-Joo district.

  • PDF