• Title/Summary/Keyword: retrospective exposure estimation

Search Result 6, Processing Time 0.019 seconds

Estimating Benzene Exposure Level over Time and by Industry Type through a Review of Literature on Korea

  • Park, Donguk;Choi, Sangjun;Ha, Kwonchul;Jung, Hyejung;Yoon, Chungsik;Koh, Dong-Hee;Ryu, Seunghun;Kim, Soogeun;Kang, Dongmug;Yoo, Kyemook
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.174-183
    • /
    • 2015
  • The major purpose of this study is to construct a retrospective exposure assessment for benzene through a review of literature on Korea. Airborne benzene measurements reported in 34 articles were reviewed. A total of 15,729 individual measurements were compiled. Weighted arithmetic means [AM(w)] and their variance calculated across studies were summarized according to 5-year period intervals (prior to the 1970s through the 2010s) and industry type. Industries were classified according to Korea Standard Industrial Classification (KSIC) using information provided in the literature. We estimated quantitative retrospective exposure to benzene for each cell in the matrix through a combination of time and KSIC. Analysis of the AM(w) indicated reductions in exposure levels over time, regardless of industry, with mean levels prior to the 1980-1984 period of 50.4 ppm (n = 2,289), which dropped to 2.8 ppm (n = 305) in the 1990-1994 period, and to 0.1 ppm (n = 294) in the 1995-1999 period. There has been no improvement since the 2000s, when the AM(w) of 4.3 ppm (n = 6,211) for the 2005-2009 period and 4.5 ppm (n = 3,358) for the 2010-2013 period were estimated. A comparison by industry found no consistent patterns in the measurement results. Our estimated benzene measurements can be used to determine not only the possibility of retrospective exposure to benzene, but also to estimate the level of quantitative or semiquantitative retrospective exposure to benzene.

Evaluation of Crystalline Silica Exposure Level by Industries in Korea (국내 업종별 결정형 유리규산 노출 평가)

  • Yeon, Dong-Eun;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.398-422
    • /
    • 2017
  • Objectives: The major aim of this study is to construct the database of retrospective exposure assessment for crystalline silica through reviews of literatures in South Korea. Methods: Airborne concentrations of crystalline silica were collected using an academic information search engine, Research Information Service System(RISS), operated by the Korea Education & Research Information Service(KERIS). The key words used for the literature search were 'silica', 'crystalline silica', 'cristobalite', 'quartz' and 'tridymite'. A total number of 18 published documents with the information of crystalline silica level in air or bulk samples were selected and used to estimate retrospective exposures to crystalline silica. Weighted arithmetic mean(WAM) calculated across studies was summarized by industry type. Industries were classified according to Korea Standard Industrial Classification(KSIC) using information provided in the literature. Results: A total of 2,131 individual air sampling data measured from 1987 to 2012 were compiled. Compiled individual measurement data consisted of 827 respirable crystalline silica (RCS), 31 total crystalline silica(TCS), 24 crystalline silica(CS), 778 respirable dust(RD) and 471 total dust(TD). Most of RCS measurements(68.9%) were collected from 'cast of metals(KSIC 243)'. Comparing industry types, 'mining coal and lignite(KISC 051)' showed the highest WAM concentration of RCS, $0.14mg/m^3$, followed by $0.11mg/m^3$ of 'manufacture of other non-metallic mineral products(KSIC 239)', $0.108mg/m^3$ of 'manufacture of ceramic ware(KSIC 232)', $0.098mg/m^3$ of 'heavy construction(KSIC 412)' and $0.062mg/m^3$ of 'cast of metals(KSIC 243)'. In terms of crystalline silica contents in airborne dust, 'manufacture of other non-metallic mineral products(KSIC 239)' showed the highest value of 7.3%(wt/wt), followed by 6.8% of 'manufacture of ceramic ware(KSIC 232)', 5.8% of 'mining of iron ores(KSIC 061)', 4.9% of 'cast of metals(KSIC 243)' and 4.5% of 'heavy construction(KSIC 412)'. WAM concentrations of RCS had no consistent trends over time from 1994 ($0.26mg/m^3$) to 2012 ($0.12mg/m^3$). Conclusion: The data set related RCS exposure level by industries can be used to determine not only the possibility of retrospective exposure to RCS, but also to evaluate the level of quantitative retrospective exposure to RCS.

Review of Hazardous Agent Level in Wafer Fabrication Operation Focusing on Exposure to Chemicals and Radiation (반도체 산업의 웨이퍼 가공 공정 유해인자 고찰과 활용 - 화학물질과 방사선 노출을 중심으로 -)

  • Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Objectives: The aim of this study is to review the results of exposure to chemicals and to extremely low frequency(ELF) magnetic fields generated in wafer fabrication operations in the semiconductor industry. Methods: Exposure assessment studies of silicon wafer fab operations in the semiconductor industry were collected through an extensive literature review of articles reported until the end of 2015. The key words used in the literature search were "semiconductor industry", "wafer fab", "silicon wafer", and "clean room," both singly and in combination. Literature reporting on airborne chemicals and extremely low frequency(ELF) magnetic fields were collected and reviewed. Results and Conclusions: Major airborne hazardous agents assessed were several organic solvents and ethylene glycol ethers from Photolithography, arsenic from ion implantation and extremely low frequency magnetic fields from the overall fabrication processes. Most exposures to chemicals reported were found to be far below permissible exposure limits(PEL) (10% < PEL). Most of these results were from operators who handled processes in a well-controlled environment. In conclusion, we found a lack of results on exposure to hazardous agents, including chemicals and radiation, which are insufficient for use in the estimation of past exposure. The results we reviewed should be applied with great caution to associate chronic health effects.

Job-specific Questionnaire for Estimating Exposure to Hazardous Agents among Semiconductor Workers (반도체 공정 근로자 직무 노출을 추정하기 위한 설문(Job-specific Questionnaire) 개발)

  • Park, Donguk;Choi, Sangjun;Heo, Jeongin;Roh, Hyunseog;Park, Jihoon;Ha, Kwonchul;Yoon, Chungsik;Kim, Won;Kim, Seungwon;Kim, Hyoungryoul;Kwon, Hojang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • Objectives: One major limitation encountered in retrospective exposure assessment for epidemiological study is the lack of exposure records and information maintained by companies which if they existed would allow the estimation of past exposure to hazardous operations and agents. This study developed a job-specific questionnaire(JSQ) to estimate exposure profiles among semiconductor workers, including operation and job. Methods: This JSQ can be directly applied to workers who work or have worked in a wafer fabrication or a chip packaging and assembly facility. Results and Conclusions: We used this JSQ to obtain past exposure information from semiconductor workers via face-to-face investigation. Major contents include questions on the facilities, operations and jobs to which they have been exposed since they entered employment in the semiconductor industry. The total number of questions in the JSQ is 18. Responses to this JSQ can be used not only to estimate retrospective exposure to operations and jobs in the semiconductor industry, but also to associate with the risk of all causes of death and risk of disease, including cancer.

Power Estimation and Follow-Up Period Evaluation in Korea Radiation Effect and Epidemiology Cohort Study (원전 코호트 연구의 적정 대상규모와 검정력 추정)

  • Cho, In-Seong;Song, Min-Kyo;Choi, Yun-Hee;Li, Zhong-Min;Ahn, Yoon-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.6
    • /
    • pp.543-548
    • /
    • 2010
  • Objectives: The objective of this study was to calculate sample size and power in an ongoing cohort, Korea radiation effect and epidemiology cohort (KREEC). Method: Sample size calculation was performed using PASS 2002 based on Cox regression and Poisson regression models. Person-year was calculated by using data from '1993-1997 Total cancer incidence by sex and age, Seoul' and Korean statistical informative service. Results: With the assumption of relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, sample size calculation was 405 events based on a Cox regression model. When the relative risk was assumed to be 1.5 then number of events was 170. Based on a Poisson regression model, relative risk=1.3, exposure:non-exposure=1:2 and power=0.8 rendered 385 events. Relative risk of 1.5 resulted in a total of 157 events. We calculated person-years (PY) with event numbers and cancer incidence rate in the nonexposure group. Based on a Cox regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, 136 245PY was needed to secure the power. In a Poisson regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, person-year needed was 129517PY. A total of 1939 cases were identified in KREEC until December 2007. Conclusions: A retrospective power calculation in an ongoing study might be biased by the data. Prospective power calculation should be carried out based on various assumptions prior to the study.

Reference dosimetry for inter-laboratory comparison on retrospective dosimetry techniques in realistic field irradiation experiment using 192Ir

  • Choi, Yoomi;Kim, Hyoungtaek;Kim, Min Chae;Yu, Hyungjoon;Lee, Hyunseok;Lee, Jeong Tae;Lee, Hanjin;Kim, Young-su;Kim, Han Sung;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2599-2605
    • /
    • 2022
  • The Korea Retrospective Dosimetry network (KREDOS) performed an inter-laboratory comparison to confirm the harmonization and reliability of the results of retrospective dosimetry using mobile phone. The mobile phones were exposed to 192Ir while attached to the human phantoms in the field experiment, and the exposure doses read by each laboratory were compared. This paper describes the reference dosimetry performed to present the reference values for inter-comparison and to obtain additional information about the dose distribution. Reference dosimetry included both measurement using LiF:Mg,Cu,Si and calculation via MCNP simulation to allow a comparison of doses obtained with the two different methodologies. When irradiating the phones, LiF elements were attached to the phones and phantoms and irradiated at the same time. The comparison results for the front of the phantoms were in good agreement, with an average relative difference of about 10%, while an average of about 16% relative difference occurred for the back and side of the phantom. The differences were attributed to the different characteristics of the physical and simulated phantoms, such as anatomical structure and constituent materials. Nevertheless, there was about 4% of under-estimation compared to measurements in the overall linear fitting, indicating the calculations were well matched to the measurements.