• Title/Summary/Keyword: retroreflection

Search Result 17, Processing Time 0.025 seconds

A Study on the Mechanism and Design of Reflective Sheet (반사시트의 메커니즘 및 설계에 관한 연구)

  • Lee, Ho-Yeon;Jung, Ha-Kyu;Oh, Young-Tak;Kwon, Won-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.65-70
    • /
    • 2008
  • The shape and the material of a reflective sheet affect the amount and the range of retroreflection on incident angle of light, significantly. In this study, the method to determine the shape and the material of the reflective sheet is introduced for the maximum retroreflection. Since the microprism shape with an equilateral triangle base has been used widely, the shape optimization of the microprism shape is carried out. The path of the light within the prism is geometrically calculated to find the relationship between incoming and outgoing light to and from a microprism. The optimal shape of a microprism found by the simulation has almost same figure with the one being used in industry for the maximum retroreflection. It is also found that the refraction index of the reflective sheet is another parameter to control for maximum retroreflection and the range of retroreflection.

Extracting roof edges of specular polyhedra (경면 다면체의 모서리 추출)

  • 박원식;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.379-382
    • /
    • 1997
  • This paper introduces a new vision technique for extracting roof edges of polyhedra having specularly reflecting surfaces. There have been many previous works on object recognition using edge information. But they can not be applied to specular objects since it is hard to acquire reliable camera images of specular objects. If there is a method which can extract the edges of specular objects, it is possible to apply edge-based recognition algorithms to specular objects. To acquire the reliable edge images of specular objects, scanned double pass retroreflection method is proposed, whose main physical characteristic is curvature-sensitive. This utility of the physical characteristic is motivated by the idea that roof edges can be characterized as local surfaces of high curvature. In this paper, the optical characteristics of double pass retroreflection are discussed and a series of simulation studies are performed to verify and analyze the sensor characteristics. The results from a series of simulations show the effectiveness of the proposed method.

  • PDF

A Conversion Model of the Various Rotational Body Shapes in the Retroreflection System (Retroreflection 시스템의 다체형 회전체의 변환모형에 관한 연구)

  • Park, Peom
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1995
  • This study is for the development of a model to convert a set of rotational bodies into the new theoretical design for the equivalent volume transformation between the geometric angles and the specific intensity in the traffic control material system, called the retroreflection system to guide the night driver for safety. There are five new models theoretically identified with the concept of the retroreflective performance and human environment of the night driver. The new system can evaluate the design in retroreflective transportation material system with better performance, safety, and economy.

  • PDF

Measurement of the 3-Dimensional Shapes of Specular Objects by Using Double Pass Retroreflection (재귀반사 특성을 이용한 경면물체의 3차원 형상 측정)

  • Park, W.S.;Ryu, Y.K.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.64-72
    • /
    • 1996
  • This paper is aimed to develop an optical method for measuring 3-dimensional shapes of specular objects having curved surfaces. The existing methods measuring the shapes of specular objects have several common disadvantages: they may not work properly if the surface is highly specular like mirror surface or if the reflectance property is not uniform over the surface. And, they often require the a priori knowledege about the surface reflectance. To overcome these disadvantages, the measurement using double pass retroreflection method is proposed in this paper. For this measurement principle, an experimental measuring system is designed and prepared which is composed of a galvanometer scanner, a beam splitter, a laser source, a CCD camera, and a reflector made of retroreflective material. To verify the effectiveness of the measurement system a series of experiments are performaed for various specular objects. The results observed from the experiments show that the developed optical sensing system can be an effective mean of measuring the 3-D shapes of specular objects.

  • PDF

Preparation and Physical Properties of Diamond Grade Reflective Sheets Using Microprism (마이크로프리즘을 사용한 초고휘도 재귀반사시트의 제조 및 특성)

  • Lee, Min-Ho;Lim, Du-Hyun;Heo, Min-Yeong;Ahn, Jou-Hyeon;Park, Jin-Woo;Yu, Ji-Hyun;Kim, Jong-Seon;Ryu, Ho-Suk;Ahn, Hyo-Jun;Kim, Ik-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • Prismatic reflective sheets were prepared using microprisms, and their retroreflection and structural properties were investigated and compared with encapsulated lens type reflective sheets based on glass beads. As prepared, the prismatic reflective sheets show well arranged array of microprisms. The arrangement of glass beads in encapsulated lens type reflective sheets is also found to be uniform without any cracks. However, during the coating process of the PET layer, the beads are coming out and the gaps are formed due to the application of high pressure. Even though the preparation method for reflective sheets based on microprisms is similar to that of reflective sheets based on glass beads, the method is relatively simple and cost effective, and also needs less time. Prismatic reflective sheets show higher coefficient of retroreflection from all entrance angles compared to reflective sheets based on glass beads. The results prove that the prismatic reflective sheets can be used for preparing the traffic sign boards to secure a clear view.

Assessing the Refractive Index of Glass Beads for Use in Road-marking Applications via Retroreflectance Measurement

  • Shin, Sang Yeol;Lee, Ji In;Chung, Woon Jin;Cho, Sung-Hoon;Choi, Yong Gyu
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.415-422
    • /
    • 2019
  • Retroreflection of vehicle headlights, as induced by spherical glass beads, is a key optical phenomenon that provides road-surface markings with greatly enhanced visibility, thus better securing a driver's safety in the nighttime as well as in unclear daytime. Retroreflectance of glass beads is a quite sensitive function of their refractive index, so that measurement of the refractive index of glass specifically in the shape of spherical beads needs to be performed within a reasonable uncertainty that is tolerable for road-marking applications. The Becke line method has been applied in assessing refractive index of such glass beads as e.g. an industrial standard in the Republic of Korea; however, the reference refractive-index liquids are not commercially available these days for refractive index greater than 1.80 due to the toxicity of the constituent materials. As such, high-refractive-index glass beads require an alternate method, and in this regard we propose a practically serviceable technique with uncertainty tantamount to that of the Becke line method: Based on comparison of calculated and measured retroreflectance values of commercial glass beads, we discover that their refractive index can be determined with reasonable precision via the retroreflectance measurement. Specifically, in this study the normalized retroreflectance originating from a single glass sphere is computed as a function of refractive index using the Fresnel equations, which is then validated as coinciding well with retroreflectance values measured from actual specimens, i.e. glass-bead aggregates. The uncertainties involved are delineated in connection with radius and imperfections of the glass beads.

Development of the Optimum Condition for Improving Retroreflection of Road Markings (노면표시 반사성능 향상을 위한 최적 조건 개발)

  • 여운웅
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.342-351
    • /
    • 1998
  • 노면표시는 운전자에게 시선유도와 각종 규제 및 지시에 대한 정보를 제공함으로써 교통안전 및 소통에 도움을 주는 시설로써 주야간의 시인성 확보가 중요하며 이를 위해서는 반사화가 필요하다. 노면표시의 반사성능은 유리알 (Glass Bead)의 함량 및 종류, 용융온도, 도료의 색도등 각 영향인자에 의해 결정되지만 현재는 시공법 및 관련 연구의 미흡으로 현행기준의 최하수준을 상회하는 정도로 제공되고 있다. 따라서 본 연구에서는 노면표시의 시공에 관계되는 각 요인중 반사성능가 내구성에 영향을 미치는 주요인자 및 반사성능을 최적화하기 위한 인자별 최적조합을 도출하였다. 연구결과 유리알 살포량이 중량비로 25%-30%, 용융시 온도가 $188^{\circ}C$$\pm$$10^{\circ}C$일 때 노면표면시의 반사성능이 최적화됨을 밝혀내었다. 또한 유리알의 품질개선과 함께 황색 노면표시의 재귀반사 휘도계수 기준을 현재 기준보다 상향조정할 필요성이 있음을 제안하였다.

  • PDF

Analysis on Glass-Bead Type Retroreflector's Optical Characteristics (유리구슬형 재귀반사기의 광학적 특성 해석)

  • Lee, E.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.165-173
    • /
    • 1994
  • Retroreflector is different from other reflecting surfaces as it mades reflection in which radiation is returned in directions close to its incoming direction. Because of this characteristics, retroreflectors find many applications in traffic safety related areas. Retroreflectors are usually made using comer cubes, or partially coated glass beads. These glass beads can be made very small, so that they can be coated on sheets or mixed with paints. The design of glass type retroreflector depends on glass bead's shape and material, and its optical characteristics are related to the refractive index of glass. In this paper, a method of anlyzing glass bead type retroreflector's sptical characteristics with respect to shape and optica property of the glass, is presented. First, the coefficient of retroreflection, which is a measure of retroreflector's optical characteristics, is derived analytically using geometrical optics method. And the result is plotted using numerical methods. The results show good match with those obtained experimentally, which were supplied from a commercial retroreflector manufacturer.

  • PDF

Structural and Physical Properties of Reflective Sheets Prepared by Using Glass Beads (유리구슬을 사용하여 제조된 재귀반사시트의 구조 및 재귀반사 특성 연구)

  • Lim, Du-Hyun;Lee, Min-Ho;Heo, Min-Yeong;Ahn, Jou-Hyeon;Park, Jin-Woo;Yu, Ji-Hyun;Kim, Jong-Seon;Ryu, Ho-Suk;Ahn, Hyo-Jun;Kim, Ik-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, engineering grade and high intensity reflective sheets were prepared with glass beads and their reflection performance and physical properties were investigated. The reflective sheets prepared by using glass beads are divided into enclosed or encapsulated lens type, depending on whether the glass beads are open in air or not. Because of an extra layer on the glass bead surface, the enclosed lens type reflective sheets show very little change in the properties by bad weather conditions, compared to encapsulated lens type reflective sheets. Optimization of the amount of glass beads on the surface was carried out, which determines the retroreflective properties. Enclosed and encapsulated lens type reflective sheets with various colors were prepared and their coefficients of retroreflection were determined. The encapsulated type reflective sheet with white color shows a coefficient of retroreflection of $210.4cd/1x{\cdot}m^2$, which is higher than the enclosed type ($74cd/1x{\cdot}m^2$). Effect of washing on the reflective property and adhesive power of the reflective sheets was investigated, and it is found that the number of glass beads decreased with washing and the aluminum layer deposited was damaged extensively in the encapsulated lens type reflective sheets.

Construction of a Distribution Photometer System for Automobile Light Sources (자동차용 광원의 광도분포 측정장치(배광측정기)제작)

  • 김용완;김홍기;이인원;이완순;이상원
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.4
    • /
    • pp.53-61
    • /
    • 1996
  • A distribution photometer was constructed to measure the angular distribution of luminous intensity of light sources and the reflected luminance of retroreflectors. This system incorporates a goniometer to rotate test light source(360 degree in yaw rotation and $\pm$30 degree in pictch rotation), a photomultiplier tube as light detector, light projector for retroreflection measurements, and the control and display unit. The ranges of luminous Intensity measurements and observation angles are 0.01~199900 cd and 0.2~1.5 degree respectively. The uncertainty of luminous intensity measurements is $\pm$3%. This paper describes the construction of the distribution photometer and the performance characteristics.

  • PDF