• Title/Summary/Keyword: retrofitting method

Search Result 181, Processing Time 0.033 seconds

Rehabilitation of hospital buildings using passive control systems

  • Syrmakezis, C.A.;Mavrouli, O.A.;Antonopoulos, A.K.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.305-312
    • /
    • 2006
  • In the case of hospital buildings, where seismic design requirements are very high, existing structuresand especially those attacked by past earthquakes, appear, often, unable to fulfil the necessary safety prerequisites. In this paper, the retrofitting of hospital buildings is investigated, using alternative methods of repair and strengthening. Analysis of an existing hospital building in Patras, Greece, is performed. The load-bearing system is a reinforced concrete system. Two solutions are proposed: strengthening using concrete jackets around column and beam elements and application of viscoelastic dampers for the increase of the stability of the structure. Adequate finite element models are constructed for each case and conclusions are drawn on the efficiency of each rehabilitation method.

Evaluation of Field Application for the Developed Retrofitting Process and Analysis of Bacterial Community Structure in Pilot Plant (하수처리장 Retrofit 공정의 현장적용성 평가 및 세균 군집 분포 연구)

  • Kim, Mee-Kyung;Hong, Jun-Hyeok;Kim, Youn-Kwon;Ahn, Tae-Seok;Shin, Eung-Bai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.240-248
    • /
    • 2006
  • In this study, a retrofitting BNR process that was modified for the economical applicability was proposed and evaluated in the pilot plant($50m^3/d$). At the same time the bacterial community structure was investigated in the pilot plant by using FISH(fluorescent in situ hybridization) method. Economically 16% of the initial construction cost for the proposed process(introduction of a biological nutrient removal process of $60,000m^3/d$ scale basis) was reduced due to the absence of a bioreactor. Water treatment efficiencies and maintenance facilities of the modified process were satisfied with the strengthened discharge permits in Korea throughout a long term pilot plant operating including a winter season. Bacterial populations in the pilot plant and in the control plant(A2/O process, B SIP(Sewage Treatment Plant)) were remained uniformly during the test period, but bacterial structure in the bioreactor was changed drastically. Proportions of ${\beta}$-proteobacteria group including soil bacteria which play a important role in wastewater treatment increased $25{\sim}607%$ in population.

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

Integrated Evaluation of Advanced Activated Sludge Processes Based on Mathematical Model and Fuzzy Inference (수학적 모델 및 퍼지 추론에 의한 고도 활성슬러지 공정의 통합 평가)

  • Kang, Dong-Wan;Kim, Hyo-Su;Kim, Ye-Jin;Choi, Su-Jung;Cha, Jae-Hwan;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • At present, the biological nutrient removal (BNR) process for removal of nitrogen and phosphorus is being constructing to keep pace with the reinforced standard of effluent quality and the traditional activated sludge process of preexistence is being promoting to retrofit. At the most case of retrofitting, processes are subjected to be under consideration as alternative BNR process for retrofitting. However, process evaluation methods are restricted to compare only treatment efficiency. Therefore, when BNR process apply, process evaluation was needed various method for treatment efficiency as well as sludge production and aeration cost, and all. In this study, the evaluation method of alternative process was suggested for the case for retrofitting S wastewater treatment plant which has been operated the standard activated sludge process. Three BNR processes for evaluation of proper alternatative process were selected and evaluated with suggested method. The selected $A^2$/O, VIP and DNR processes were evaluated using the mathematical model which is time and cost effective as well as gathered objective evaluation criteria. The evaluation between 5 individual criteria was possible including sludge production and energy efficiency as well as treatment performance. The objective final decision method for selection of optimal process was established through the fuzzy inference.

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

Analysis-oriented model for seismic assessment of RC jacket retrofitted columns

  • Shayanfar, Javad;Omidalizadeh, Meysam;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.371-390
    • /
    • 2020
  • One of the most common strategies for retrofitting as-built reinforced concrete (RC) columns is to enlarge the existing section through the application of a new concrete layer reinforced by both steel transverse and longitudinal reinforcements. The present study was dedicated to developing a comprehensive model to predict the seismic behavior of as-built RC jacketed columns. For this purpose, a new sectional model was developed to perform moment-curvature analysis coupled by the plastic hinge method. In this analysis-oriented model, new methodologies were suggested to address the impacts of axial, flexural and shear mechanisms, variable confining pressure, eccentric loading, longitudinal bar buckling, and varying axial load. To consider the effective interaction between core and jacket, the monolithic factor approach was adopted to extent the response of the monolithic columns to that of a respective RC jacket strengthened column. Next, parametric studies were implemented to examine the effectiveness of the main parameters of the RC jacket strategy in retrofitting as-built RC columns. Ultimately, the reliability of the developed analytical model was validated against a series of experimental results of as-built and retrofitted RC columns.

Numerical simulation of the experimental results of a RC frame retrofitted with RC Infill walls

  • Kyriakides, Nicholas;Chrysostomou, Christis Z.;Kotronis, Panagiotis;Georgiou, Elpida;Roussis, Panayiotis
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.735-752
    • /
    • 2015
  • The effectiveness of seismic retrofitting of RC-frame buildings by converting selected bays into new walls through infilling with RC walls was studied experimentally using a full-scale four-storey model tested with the pseudo-dynamic (PsD) method. The frames were designed and detailed for gravity loads only using different connection details between the walls and the bounding frame. In order to simulate the experimental response, two numerical models were formulated differing at the level of modelling. The purpose of this paper is to illustrate the capabilities of these models to simulate the experimental nonlinear behaviour of the tested RC building strengthened with RC infill walls and comment on their effectiveness. The comparison between the capacity, in terms of peak ground acceleration, of the strengthened frame and the one of the bare frame, which was obtained numerically, has shown a five-fold increase.

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 1: Debonding of plates due to flexure

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.491-504
    • /
    • 2000
  • A convenient method for enhancing the strength and stiffness of existing reinforced concrete beams is to bond adhesively steel plates to their tension faces. However, there is a limit to the applicability of tension face plating as the tension face plates are prone to premature debonding and, furthermore, the addition of the plate reduces the ductility of the beam. An alternative approach to tension face plating is to bond adhesively steel plates to the sides of reinforced concrete beams, as side plates are less prone to debonding and can allow the beam to remain ductile. Debonding at the ends of the side plates due to flexural forces, that is flexural peeling, is studied in this paper. A fundamental mathematical model for flexural peeling is developed, which is calibrated experimentally to produce design rules for preventing premature debonding of the plate-ends due to flexural forces. In the companion paper, the effect of shear forces on flexural peeling is quantified to produce design rules that are applied to the strengthening and stiffening of continuous reinforced concrete beams.

Optimal synthesis for retrofitting heat exchanger network

  • Lee, In-Beum;Jung, Jae-Hak;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1259-1264
    • /
    • 1990
  • During the past two decades, a lot of researches have been done on the synthesis of grassroot heat exchanger networks(HEN). However, few have been dedicated to retrofit of existing heat exchanger networks, which usually use more amount of utilities (i.e. steam and/or cooling water) than the minimum requirements. This excess gives motivation of trades-off between energy saving and rearranging investment. In this paper, an algorithmic-evolutionary synthesis procedure for retrofitting heat exchanger networks is proposed. It consists of two stages. First, after the amount of maximum energy recovery(MER) is computed, a grass-root network featuring minimum number of units(MNU) is synthesized. In this stage, a systematic procedure of synthesizing MNU networks is presented. It is based upon the concept of pinch, from which networks are synthesized in a logical way by the heuristics verified by the pinch technology. In the second stage, since an initial feasible network is synthesized based on the pre-analysis result of MER and must-matches, an assignment problem between new and existing units is solved to minimize total required additional areas. After the existing units are assigned, the network can be improved by switching some units. For this purpose, an improvement problem is formulated and solved to utilize the areas of existing units as much as possible. An example is used to demonstrate the effectiveness of the proposed method.

  • PDF