• Title/Summary/Keyword: retinal structure

Search Result 29, Processing Time 0.025 seconds

Three Dimensional Reconstruction of Cellular Structure in Drosophila Retina Using High Voltage Electron Microscopy (초고압전자현미경을 이용한 초파리 망막 세포의 3차원 구조)

  • Mun, Ji-Young;Lee, Kyung-Eun;Han, Sung-Sik
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.185-189
    • /
    • 2009
  • Studies about the structure of Drosophila melanogaster retinal cell using electron microscopy have been carried out in details since 1960s. However, these results can have limitations in functional research because of two-dimensional structure. In this study, the adult retina of Drosophila melanogaster was investigated by employing high pressure freezing method, serial sections, high voltage electron microscopy, and 3-dimensional reconstruction method. From there results, mitochondria, microtubules, and nuclei were reconstructed as 3-dimensional structure using IMOD program. The 3D structure of these organelles showed that mitochondira mainly located in distal region near lens, and microtubule mainly located in distal and basal region. The 3D reconstruction of these organelles can be used for a critical evaluation in the dynamic change of cellular organelles caused by functional abnormality like retinal degeneration.

High-Speed SD-OCT for Ultra Wide-field Human Retinal Three Dimensions Imaging using GPU (병렬처리 그래픽 기술 기반의 Spectral Domain-Optical Coherence Tomography를 이용한 3차원 광 대역 망막 촬영)

  • Park, Kibeom;Cho, Nam Hyun;Wijesinghe, Ruchire Eranga Henry;Kim, Jeehyun
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • We have developed an ultra wide-field of view Optical Coherence Tomography(OCT) which has capability to 2D and 3D views of cross-sectional structure of in vivo human retina. Conventional OCT has a limitation in visualizing the entire retina due to a reduced field of view. We designed an optical setup to significantly improve the lateral scanning range to be more than 20 mm. The entire human retinal structure in 2D and 3D was reported in this paper with the developed OCT system. Also, we empirically searched an optimized image size for real time visualization by analyzing variation of the frame rate with different lateral scan points. The size was concluded to be $1024{\times}2000{\times}300$ pixels which took 9 seconds for visualization.

Analysis of Cis- Trans Photoisomerization Mechanism of Rhodopsin Based on the Tertiary Structure of Rhodopsin

  • Yamada, Atsushi;Yamato, Takahisa;Kakitani, Toshiaki;Yamamoto, Shigeyoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.51-54
    • /
    • 2002
  • We propose a novel mechanism (Twist Sharing Mechanism) for the cis-trans photoisomerization of rhodopsin, based on the molecular dynamics (MD) simulation study. New things devised in our simulations are (1) the adoption of Mt. Fuji potentials in the excited state for twisting of the three bonds C9=C10, C11=C12 and C13=14 which are modeled using the detailed ab initio quantum chemical calculations and (2) to use the rhodopsin structure which was resolved recently by the X-ray crystallographic study. As a result, we found the followings: Due to the intramolecular steric hindrance between 20-methyl and 10-H in the retinal chromophore, the C12-C13 and C10-C11 bonds are considerably twisted counterclockwise in rhodopsin, allowing only counterclockwise rotation of the C11 =C12 in the excited state. The movement of 19-methyl in rhodopsin is blocked by the surrounding three amino acids, Thr 118, Met 207 and Tyr 268, prohibiting the rotation of C9=C10. As a result only all-trans form of the chromophore is obtainable as a photoproduct. At the 90$^{\circ}$ twisting of C11=C12 in the course of photoisomerization, twisting energies of the other bonds amount to about 20 kcal/mol. If the transition state for the thermal isomerization is assumed to be similar to this structure, the activation energy for the thermal isomerization around C11=C12'in rhodopsin is elevated by about 20 kcal/mol and the thermal isomerization rate is decelerated by 10$\^$-14/ times than that of the retinal chromophore in solution, protecting photosignal from the thermal noise.

  • PDF

Microbial Rhodopsins: Genome-mining, Diversity, and Structure/Function

  • Jung, Kwang-Hwan;Vishwa Trivedi;Yang, Chii-Shen;Oleg A. Sineschekov;Elena N. Spudich;John L. Spudich
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.45-48
    • /
    • 2002
  • Microbial rhodopsins, photoactive 7-transmembrane helix proteins that use retinal as their chromophore, were observed initially in the Archaea and appeared to be restricted to extreme halophilic environments. Our understanding of the abundance and diversity of this family has been radically transformed by findings over the past three years. Genome sequencing of cultivated microbes as well as environmental genomics have unexpectedly revealed archaeal rhodopsin homologs in the other two domains of life as well, namely Bacteria and Eucarya. Organisms containing these homologs inhabit such diverse environments as salt flats, soil, freshwater, and surface and deep ocean waters, and they comprise a broad phylogenetic range of microbial life, including haloarchaea, proteobacteria, cyanobacteria, fungi, and algae. Analysis of the new microbial rhodopsins and their expression and structural and functional characterization reveal that they fulfill both ion transport and sensory functions in various organisms, and use a variety of signaling mechanisms. We have obtained the first crystallographic structure for a photosensory member of this family, the phototaxis receptor sensory rhodopsin II (SRII, also known as phoborhodopsin) that mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The structure obtained from x-ray diffraction of 3D crystals prepared in a cubic lipid phase reveals key features responsible for its spectral tuning and its sensory function. The mechanism of SRII signaling fits a unified model for transport and signaling in this widespread family of phototransducers.

  • PDF

Information Processing in Primate Retinal Ganglion

  • Je, Sung-Kwan;Cho, Jae-Hyun;Kim, Gwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.132-137
    • /
    • 2004
  • Most of the current computer vision theories are based on hypotheses that are difficult to apply to the real world, and they simply imitate a coarse form of the human visual system. As a result, they have not been showing satisfying results. In the human visual system, there is a mechanism that processes information due to memory degradation with time and limited storage space. Starting from research on the human visual system, this study analyzes a mechanism that processes input information when information is transferred from the retina to ganglion cells. In this study, a model for the characteristics of ganglion cells in the retina is proposed after considering the structure of the retina and the efficiency of storage space. The MNIST database of handwritten letters is used as data for this research, and ART2 and SOM as recognizers. The results of this study show that the proposed recognition model is not much different from the general recognition model in terms of recognition rate, but the efficiency of storage space can be improved by constructing a mechanism that processes input information.

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway

  • Park, Wonjin;Baek, Yi-Yong;Kim, Joohwan;Jo, Dong Hyun;Choi, Seunghwan;Kim, Jin Hyoung;Kim, Taesam;Kim, Suji;Park, Minsik;Kim, Ji Yoon;Won, Moo-Ho;Ha, Kwon-Soo;Kim, Jeong Hun;Kwon, Young-Guen;Kim, Young-Myeong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.474-483
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.

ANION INDUCED BLUE TO PURPLE TRANSITION IN BACTERIORHODOPSIN

  • Singh, Anil K.;Kapil, Mrunalini M.
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.71-76
    • /
    • 1996
  • Anil K. Singh, Mrunalini M. Kapil, Department of Chemistry, Indian Institute of Technology Bombay - 400076, INDIA Purple membrane (PM, $\lambda$$_{max}$ 570 nm) of H. halobium on treatment with sulphuric acid changes its colour to blue ($\lambda$$_{max}$ 608 nm). The purple chromophore can be regenerated from the blue chromophore by exogeneous addition of anions such as CI$^-$ and HPO$_4^{2-}$. Chloride ion is found to be more effective than the dibasic phosphate ion in regenerating the purple chromophore. Nevertheless, one thing common to the anion regeneration is that both CI$^-$ and HPO$_4^{2-}$ show marked pH effect. At pH 1.0 the efficiency of regeneration of the purple chromophore is greater than at pH 2.0, for the same anion concentration. Fluorescence and circular dichroic studies indicate that the proteins do not undergo drastic changes at the secondary' or tertiary structure level and the native structure is preserved during this transition. However, chromophoric-site interactions between retinal and the apoprotein are affected during this colour transition. A molecular mechanism is advanced for this transition.

  • PDF

Assessment of the pigeon (Columba livia) retina with spectral domain optical coherence tomography

  • Kim, Sunhyo;Kang, Seonmi;Susanti, Lina;Seo, Kangmoon
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.65.1-65.12
    • /
    • 2021
  • Background: To assess the normal retina of the pigeon eye using spectral domain optical coherence tomography (SD-OCT) and establish a normative reference. Methods: Twelve eyes of six ophthalmologically normal pigeons (Columba livia) were included. SD-OCT images were taken with dilated pupils under sedation. Four meridians, including the fovea, optic disc, red field, and yellow field, were obtained in each eye. The layers, including full thickness (FT), ganglion cell complex (GCC), thickness from the retinal pigmented epithelium to the outer nuclear layer (RPE-ONL), and from the retinal pigmented epithelium to the inner nuclear layer (RPE-INL), were manually measured. Results: The average FT values were significantly different among the four meridians (p < 0.05), with the optic disc meridian being the thickest (294.0 ± 13.9 ㎛). The average GCC was thickest in the optic disc (105.3 ± 27.1 ㎛) and thinnest in the fovea meridian (42.8 ± 15.3 ㎛). The average RPE-INL of the fovea meridian (165.5 ± 18.3 ㎛) was significantly thicker than that of the other meridians (p < 0.05). The average RPE-ONL of the fovea, optic disc, yellow field, and red field were 91.2 ± 5.2 ㎛, 87.7 ± 5.3 ㎛, 87.6 ± 6.5 ㎛, and 91.4 ± 3.9 ㎛, respectively. RPE-INL and RPE-ONL thickness of the red field meridian did not change significantly with measurement location (p > 0.05). Conclusions: Measured data could be used as normative references for diagnosing pigeon retinopathies and further research on avian fundus structure.

Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging

  • Nam, Seung Yun;Emelianov, Stanislav Y.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • Although various ophthalmic imaging methods, including fundus photography and optical coherence tomography, have been applied for effective diagnosis of ocular diseases with high spatial resolution, most of them are limited by shallow imaging penetration depth and a narrow field of view. Also, many of those imaging modalities are optimized to provide microscopic anatomical information, while functional or cellular information is lacking. Compared to other ocular imaging modalities, photoacoustic imaging can achieve relatively deep penetration depth and provide more detailed functional and cellular data based on photoacoustic signal generation from endogenous contrast agents such as hemoglobin and melanin. In this paper, array-based ultrasound and photoacoustic imaging was demonstrated to visualize pigmentation in the eye as well as overall ocular structure. Fresh porcine eyes were visualized using a real-time ultrasound micro-imaging system and an imaging probe supporting laser pulse delivery. In addition, limited photoacoustic imaging field of view was improved by an imaging probe tilting method, enabling visualization of most regions of the retina covered in the ultrasound imaging.

Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond

  • Bang, Injin;Choi, Hee-Jung
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • The beta2-adrenergic receptor (${\beta}2AR$) belongs to the G protein coupled receptor (GPCR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ${\beta}2AR$ in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ${\beta}2AR$ is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ${\beta}2AR$. In this review, structural features of inactive and active states of ${\beta}2AR$, the interaction of ${\beta}2AR$ with heterotrimeric G protein, and the comparison with ${\beta}1AR$ will be discussed.