• Title/Summary/Keyword: retardation of Kimchi

Search Result 10, Processing Time 0.018 seconds

Retardation of Kimchi Fermentation and Growth Inhibition of Related Microorganisms by Tea Catechins (차엽카테킨의 김치발효 지연 및 관련 미생물의 증식억제)

  • Wee, Ji-Hyang;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1275-1280
    • /
    • 1997
  • The possible use of tea catechins as natural preservatives for kimchi was investigated in this study. Tea catechins separated from tea leaves had antimicrobial activity against microorganisms related to kimchi fermentation, such as Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus brevis, Pediococcus cerevisiae, Streptococcus faecalis. The degree of antimicrobial activity of catechins were different among microorganisms; that is 2 mg/mL to Leuconostoc mesenteroides, Lactobacillus plantarum, and Pediococcus cerevisiae, 4 mg/mL to Streptococcus faecalis, and 5 mg/mL to Lactobacillus brevis; however, Saccharomyces cerevisiae can not be inhibited. The effect of tea catechins on retardation of kimchi fermentation was tested by measuring changes in pH and acidity. The changes of pH and acidity of baechu-kimchi and mul-kimchi were remarkably inhibited by adding the tea catechins at the level of 2 mg/g fresh baechu. These results suggest that the tea catechins can be successfully used for the extension of shelf-life of kimchi.

  • PDF

Retardation of Kimchi Fermentation by the Extracts of Allium tuberosum and Growth Inhibition of Related Microorganisms (부추추출물의 김치발효 지연 및 관련 미생물 증식억제)

  • Kim, Seon-Jae;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.813-818
    • /
    • 1995
  • The effect of retarding the fermentation of Kimchi by the extract of leek(Allium tuberosum) were tested by measuring the changes in pH, acidity and total cell number as well as number of microorganisms involved in Kimchi fermentation such as Lactobacillus, Leuconostoc, Pediococcus, Streptococcus and yeasts. The changes of pH and acidity of Kimchi stored at $25^{\circ}C$ indicated that the shelf-life of Kimchi with leek extract was retarded by 1.5 days compared with Kimchi without leek extract. Growth of Lactobacillus, Leuconostoc, Pediococcus and yeasts in Kimchi were remarkably inhibited by adding the leek extract at the initial and the 1st day of fermentation. This result suggested the methanol extract of leek can be sucessfully used for the extension of shelf-life of Kimchi.

  • PDF

Effect of Irradiated Red Pepper Powder on Kimchi Quality during Fermentation

  • Lee, Seung-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.218-221
    • /
    • 2004
  • Irradiated red pepper powder (IRPP) was tested for its ability to retard fermentation and to maintain a high quality of Kimchi by the reduction of the initial microbial load. Kimchi containing IRPP at the doses of 0, 5, 10, 15, or 20 kGy was prepared. Quality indices for Kimchi in this study were pH, titratable acidity, reducing sugar content, total microbial count, lactic acid bacterial load, and sensory evaluation. Based on the pH and titratable acidity, the Kimchi with IRPP showed a retarded fermentation until 15 days. The number of the total aerobes and lactic acid bacteria of the Kimchi with IRPP were lower by about 1 log CFU/mL compared to control at day 0, however, the counts increased to 8.5 log CFU/mL after 10 days, which was similar to the control group. Kimchi that was fermented with 5 kGy IRPP was better than control and other treatments in odor and color, whereas the control scored highest in taste. Addition of IRPP showed a limited retardation of Kimchi fermentation without other quality deterioration.

Effect of Sodium Malate Buffer as pH Adjuster on the Fermentation of Kimchi (pH조정제 Sodium Malate Buffer의 첨가가 김치의 숙성에 미치는 효과)

  • Kim, Soon-Dong;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.4
    • /
    • pp.358-364
    • /
    • 1988
  • The effect of sodium malate buffer(SMB) on the fermentation of Kimchi was investigated. Chemical and microbial changes were investigated during fermentation of Kimchi containing 0,2,4 and 6% salt at $25^{\circ}C$. The fermentaton of lower salted Kimchi was taster than that of higher salted Kimchi. One percent addition of SMB, as pH adjuster, showed the retardation of Kimchi fermentation about 36 hours at $25^{\circ}C$. Due to the buffer action of SMB, the acidity was inclosed during the fermentation as concentration of SMB increased. The buffer action of SMB was increased during fermentation of Kimchi.

  • PDF

Retardation of Kimchi Fermentation by Addition of Glucono-δ-lacton (글루코노델타락톤의 김치 발효 지연 효과)

  • 한진숙;강준수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.553-559
    • /
    • 2004
  • This study was carried out to estimate the effects of glucono-$\delta$-lacton (GDL) on prolongation of shelf-life on Kimchi. Final concentration of added GDL was determined 0.3% according to the result of sensory evaluation. Chemical characteristics and microbiological parameters were monitored during fermentation at 1$0^{\circ}C$. GDL Kimchi showed the initial sharp decrease in pH and gradually increase of pH due to osmotic pressure and then the pH of GDL Kimchi was slowly decreased compared with that of control Kimchi during fermentation. The acidity of control Kimchi was markedly increased around pH 4.5 by growth of microorganism. Otherwise, GDL Kimchi showed that t]le formation of organic acids was slow and little amount compared with that of control Kimchi. HPLC analysis showed oxalic acid, lactic acid, acetic acid, malic acid and succinic acid appeared by fermentation. The production of lactic acid changed a lot in control Kimchi, where as little in GDL Kimchi. Growth of L. mesenteroides at initial stage of Kimchi fermentation was remarkably inhibited by adding 0.3% GDL. It retarded also the growth of L. Plantarum and L. breuis at late stage of Kimchi fermantation and led to reduce the softening of texture and retard over ripening of Kimchi. Tn sensory evaluation of Kimchi, GDL Kimchi showed the similar characteristics to the control Kimchi. This result suggested that GDL can be successfully used for the prolongation of shelf-life and sensory evaluation on Kimchi.

Pasteurization of Chinese radish Kimchi by a Pilot Scale Continuous Kimchi Pasteurizer (Pilot scale 연속식(連速式) 김치순간살균장치(瞬間殺菌裝置)를 이용(利用)한 무우김치의 살균(殺菌))

  • Gil, Gwang-Hoon;Kim, Kong-Hwan;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.95-98
    • /
    • 1984
  • A pilot scale continuous Kimchi pasteurizer was used to study some factors affecting the retardation of acidification of Chinese radish Kimchi, stored at $20^{\circ}C$. The degrees of acidification of Kimchi were measured in terms of pH, acidity and absorbance. The shelf-life of the pasteurization temperature from 60 to $70^{\circ}C$ did not result in any significant effect on delaying the acidification of Kimchi during storage, while lowering of storage temperature from 25 to $5^{\circ}C$ gave rise to a marked increase in the the shelf-life of Kimchi.

  • PDF

Effect of Addition of Ethanol on the Quality of Kimchi Paste (에탄올 첨가가 김치 양념의 품질에 미치는 영향)

  • Kang, Miran;Jung, Hyemin;Seo, Hye-Young
    • Korean journal of food and cookery science
    • /
    • v.31 no.6
    • /
    • pp.725-732
    • /
    • 2015
  • This study was conducted to evaluate the effects of ethanol on the prolongation of the shelf-life of kimchi paste. Kimchi paste was prepared by adding 0.5~3.0% ethanol, and then stored at $4^{\circ}C$ for 35 days. The retardation of kimchi paste fermentation was evaluated by measuring chemical, microbial, and sensory characteristics. Titratable acidity and pH showed a slight difference, depending on the ethanol concentration. The titratable acidity showed the low content in kimchi paste with 3.0% ethanol during fermentation, whereas the pH showed a reverse tendency, indicating that fermentation was inhibited under a high ethanol concentration. The changes in the sugar-reduced contents were similar to that of the pH. The growth of microorganisms such as total aerobic bacteria, lactic acid bacteria, yeasts and molds in kimchi paste during fermentation were inhibited by ethanol, and the addition of 3.0% ethanol was most effective to inhibit the microbial growth. The number of coliform bacteria was decreased during fermentation of kimchi paste and not detected in any sample at 35 days, except for kimchi paste with 3.0% ethanol. In sensory evaluation, the addition of 0.5~1.5% ethanol in kimchi paste was showed no significant difference on sensory properties compared to the kimchi paste without ethanol (p<0.05). As a result, it is considered that the addition of 1.5% ethanol is the most appropriate to maintain the quality of kimchi paste, without the changing the flavor.

Fermentation Patterns of Leek Kimchi and Chinese Cabbage Kimchi (부추김치와 배추김치 발효양상)

  • 안순철;김태강;이헌주;오윤정;이정숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.234-238
    • /
    • 2001
  • For the comparison of fermentation pattern of leek kimci with chinese cabbage kimchi, the changes of total viable cell number, Leuconostoc sp. bacteria, Lactobacillus sp. bacteria, pH and total sugar content of twotypes kimchies were investigated during fermentation at $20^{\circ}C$ and $10^{\circ}C$. In chinese cabbage kimchi at $20^{\circ}C$ fermentaion, the numbers of total viable cell, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria reachedthe maximum level on 2nd day and reduced slowly. But in leek kimchi, the maximum numbers of total via-ble cells, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria were obtained after 3 days fermentation,and the cell number of Lactobacillus sp. maintained at the maximum level oyer 15 days. At $10^{\circ}C$ fer-mentation, in both kimchies, the viable cell number of lactic acid bacteria more slowly increased anddecreased than at $20^{\circ}C$. The pH of chinese cabbage kimchi was 4.2 on 3rd day (optimal ripening phase) andmere decreased to 3.5 after 5 days, but in leek kimci the pH 4.2 could be reached after 10 days at $20^{\circ}C$. At $10^{\circ}C$, the optimal ripening pH 4.2 of chinese cabbage kimchi was reached after 6 days, but in leek kimchieven though after 24 days, the pH was maintained oyer 4.3. The total sugar contents of chinese cabbage him-chi and leek kimci were decreased continuously during fermentation. From these results, we know that thefermentation of leek kimchi proceed more slowly than chinese cabbage kimchi by the retardation of lacticacid bacteria growing in leek kimchi.

  • PDF

Effect of Ethanol and Polylysine Addition on Storage Stability of Kimchi (Ethanol 및 Polylysine 첨가가 김치의 저장성에 미치는 효과)

  • 정진웅;박기재;정승원
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.278-283
    • /
    • 2003
  • Addition of ethanol and/or polylysine to kimchi was investigated to improve its microbial hygienic quality and to extend shelf-life. Ethanol was added to kimchi with several concentrations(0.3%, 0.6%, 0.9%) and stored at 10$^{\circ}C$. Addition of 0.6% and 0.9% ethanol showed apparent inhibitory effect on growth of microorganism, but any distinct difference was not found between those concentrations. Addition of ethanol was more effective on growth inhibition of coliform and lactic acid bacteria than others. Addition of 0.6% and 0.9% ethanol retarded apparently pH decrease and acidity increase. Although addition of 0.6% ethanol in combination with 0.12% polylysine showed good retardation of pH decrease and acidity increase, overall organoleptic quality was not good because of off-flavor and taste. Also, addition of 0.6% ethanol showed good overall organoleptic quality.

Fermentative Characteristics of Low-Sodium $Kimchi$ Prepared with Salt Replacement (대체염을 이용한 저 나트륨 김치의 발효 특성)

  • Yu, Kwang-Won;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.753-760
    • /
    • 2011
  • This study was carried out to investigate the effects of various kinds of commercial salts, including Hanju salt, Deep sea water salt, $Salicornia$ $herbacea$ salt, Guwoon salt, Bamboo salt and salt replacement for the reduction of Na concentration in $kimchi$. The fermentative characteristics of these salts were determined during the fermentation at $10^{\circ}C$. $kimchi$ using a salt replacement and with $Salicornia$ $herbacea$ salt showed slow changes in their pH values. The use of salt replacement showed the lowest level(0.97%) of the retardation of $kimchi$ fermentation. For the preparation of $kimchi$ that used a low Na, chemical and microbial changes were investigated during the fermentation of process, examining preparations with both table salt and a salt replacement(CS-17). The salinity level of $kimchi$ prepared with table salt(control) and the salt replacement (CS-17) were 2.17~2.5% and 1.72~1.99% during fermentation, respectively. The Na contents of $kimchi$ with CS-17(562.5 mg%) showed a lower level than that with table salt(879.0 mg%). The growth of Leuconostoc sp. was highest ($1.5{\times}10^8$ cfu/g) in $kimchi$ with CS-17 at 6 day-fermentation, but the highest level($2.3{\times}10^7$ cfu/g) in $kimchi$ with table salt was at 7dayfermentation. The cells of $Lactobacillus$ sp. in the $kimchi$ prepared with CS-17 and table salt increased to $3.0{\times}10^8$ cfu/g and $6.0{\times}10^7$ cfu/g at 8day-fermentation, respectively. It was concluded that the use of CS-17 could reduce Na levels in $kimchi$ and mitigate over-maturation.