• 제목/요약/키워드: retaining wall

Search Result 740, Processing Time 0.026 seconds

Stability Investigation of the Large Size Heap of Coal Associated Wastes (석탄광산에서 발생된 대규모 폐광석 더미에 대한 안정성 검토)

  • Kang Gi-Chun;Ahn Nam-Kyu;Oh Je-Ill;Kim Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.133-144
    • /
    • 2005
  • Stability investigations were conducted for the heap of coal associated wastes occurred from D mine located in Gang-Won Province from the geotechnical and environmental engineering aspect, and a countermeasure was also examined to increase the stability in this area. Quality of water flowed from the heap of coal associated wastes was identified as Am. Slope stability investigations were conducted with both circular failure analyses using SLOPILE program and planar failure analyses in cases of dry, rainy, and ordinary slopes. The results of circular failure analyses indicated that the factor of safety is 0.78 for rainy case. for planar failure analyses, the factor of safety decreases with increase the depth and reaches below 1 about 4m depth for rainy case. A retaining wall system with backfill using the recycled-concrete aggregates as a practical scheme was suggested to satisfy both demands: reducing Am generation, and enhancing slope stability in the deposits of coal associated wastes.

Characteristics of the Cut Slopes located in Mt. Jang Area, Busan (부산 장산지역에 분포한 절개사면의 특성)

  • Song, Young-Suk;Kim, Kyeong-Su;Cho, Yong-Chan;Lee, Choon-Oh;Chae, Byung-Gon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • The information of cut slope in Mt. Jang area, Busan is investigated in order to construct the Slope Management System in Urban Area. The slope inspection sheet is made to record the characteristics for cut slopes, and that is capable to be inputted slope information systematically. The cut slopes in Mt. Jang area are consisting of 69 slopes. Most of the cut slopes are constructed in cutting slope and retaining wall (CR). The cut slopes located in housing facilities are 46 slopes, and the slopes located in school facilities are 12 slopes. The traverse of cut slopes is mainly ranged from 50 m to 150 m, and the height is mainly ranged from 10 m to 20 m. The slopes combined with soil and rock are mostly distributed. The retaining wall was installed in the toe part of cut slope in order to increase the slope stability, and the additional reinforcement methods including the anchor, drainage, preventing rock fall, shotcrete and vegetation were installed at the toe part of cut slopes.

Eco-Friendly Design Evaluation Model Using PEI for Construction Facilities (PEI를 활용한 건설시설물의 친환경 설계평가모델)

  • Kim, Joon-Soo;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.729-738
    • /
    • 2017
  • With the signing of the Paris Agreement, which is the new climate change agreement at the end of 2015, it will have a great impact on Korea environmental policy. The construction industry, which accounts for 42% of Korea's total $CO_2$ emissions, has been implementing various policies to improve the environmental problems. However, it is only applying passively to other projects except eco-friendly building certification. This is because most of the eco-related systems are based on building facilities. Therefore, there is a need for a new eco - friendly design evaluation model that can be widely applied not only to architecture but also to civil engineering facilities. In this study, a new model is developed based on the existing VE model, which adds new factors to evaluate the environmental friendliness, potential environmental pollution concept and environmental risk of facilities. This model is an eco-friendly design evaluation model that enables decision makers to effectively select alternative environmental criteria at the design stage. As a result of the case analysis of the block retaining wall and the alternative retaining wall, the value of the eco - friendly value of the alternative was 1.026 times higher than the original one. If this model is used at the design stage, it is expected to contribute not only to the construction of environmentally friendly facilities but also to the reduction of carbon emissions.

A Study on the Filed application of Environmental Friendly Porous Concrete For Retaining Wall (환경친화 옹벽용 포러스콘크리트의 현장적용성에 관한 연구Ⅱ)

  • Kim, Jeong-Hwan;Lee, Nam-Ik;Lee, Jun;Park, Seung-Bum;Jang, Young-Il;Seo, Dae-Suck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.817-820
    • /
    • 2008
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In korea, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete retaining wall block. the multi-P.O.C block applies for test in the Jangduri-cheon have been monitored planting, stability etc. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF

A Study on Efficient Deconstruction of Supporters with Response Ratio (응답비를 고려한 효율적인 버팀보 해체방안에 관한연구)

  • Choi, Jung-Youl;Park, Sang-Wook;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.469-475
    • /
    • 2022
  • As the recent structure construction is constructed as a large-scale and deep underground excavation in close proximity to the building, the installation of retaining wall and supporters (Struts) has become complicated, and the number of supporters to avoid interference of the structural slab has increased. This construction process becomes a factor that causes an increase in construction joints of a structure, leakage and an increase in wall cracks. In addition, this reduced the durability and workability of the structure and led to an increase in the construction period. This study planned to dismantle the two struts simultaneously as a plan to reduce the construction joints, and corrected the earth pressure by assuming the reaction force value by the initial earth pressure and the measured data as the response ratio. After recalculating the corrected earth pressure through the iterative trial method, it was verified by numerical analysis that simultaneous disassembly of the two struts was possible. As a result of numerical analysis applying the final corrected earth pressure, the measured value for the design reaction force was found to be up to 197%. It was analyzed that this was due to the effect of grouting on the ground and some underestimation of the ground characteristics during design. Based on the result of calculating the corrected earth pressure in consideration of the response ratio performed in this study, it was proved analytically that the improvement of the brace dismantling process is possible. In addition, it was considered that the overall construction period could be shortened by reducing cracks due to leakage and improving workability by reducing construction joints. However, to apply the proposed method of this study, it is judged that sufficient estimations are necessary as there are differences in ground conditions, temporary facilities, and reinforcement methods for each site.

A Study on the Restraint Effect on Lateral Displacement of an Inclined Earth Retaining Structure Integrated with Soil Nailing in Sandy Ground (사질토지반에 설치된 소일네일 복합형 IER의 수평변위 억제효과에 관한 연구)

  • Park, Tae-Keon;Im, Jong-Chul;Yoo, Jae-Won;Kim, Chang-Young;Kang, Sang-Kyun;Lee, Woo-Je
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.33-47
    • /
    • 2017
  • A self-supported temporary excavation method called IER is normally applicable to excavation depth ranging from 6.0 m to 7.0 m though the method depends on ground condition and overburden load. Combining IER with another method is required in deeper excavation depth in order to maintain the structural stability of the IER. In this study, we performed model tests and 3D FE analysis to check the stability of the IER adopting soil nailing method, and to propose its effective installation method. The lateral displacement of the IER using soil nailing decreased by 92% of that of IER without soil nailing. Optimum design is possible for both economic feasibility and stability when interval spacing and length of soil nails is $1.5m(S_h){\times}0.75m(S_v)$ and 86% of excavation depth, respectively. Excavation depth using IER increases 1.71 times by adopting soil nailing in increment of lateral displacement of IER right before the last excavation stage.

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

A Study on the Ground Improvement Effect with Grouting in Backside of Retaining Wall (흙막이 벽체 배면 그라우팅 시 지반보강 효과에 관한 연구)

  • Chu, Ickchan;Byun, Yoseph;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.77-83
    • /
    • 2012
  • Recently, excavations using propped walls were popularized in downtown due to reduced settlement of nearby structures. These excavations is induced strain to propped walls or settlement in near ground. In this study, the ground reinforcing effect was proven using NDS, which is an inorganic injection material. Injection tests were performed to compute optimum injection pressure and volume. Next, calibration chamber tests were performed by using computed injection pressure and volume, and wall behaviour was examined for overburden pressures of 50kPa and 150kPa. Ground reinforcing effect was shown when the material behind the propped wall was grouted. From test results, optimum injection pressure was 350kPa and the optimum volume was 10L considering economics. Calibration chamber test results show that after the material was grouted, the maximum settlement was reduced to 19% of the non-grouted condition. For overburden pressures of 50kPa and 150kPa behind the wall, the settlement of the wall increased by 58% and 57% when compared to the case of no overburden pressure.

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF