• Title/Summary/Keyword: result value

Search Result 14,281, Processing Time 0.049 seconds

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Developing the Process and Characteristics of Preservation of Area-Based Heritage Sites in Japan (일본 면형 유산 보존제도의 확산과정과 특성)

  • Sung, Wonseok;Kang, Dongjin
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.32-59
    • /
    • 2020
  • South Korea's area-based heritage preservation system originates from the "Preservation of Traditional Buildings Act" enacted in 1984. However, this system was abolished in 1996. As there was a need for protection of ancient cities in the 1960s, Japan enacted the Historic City Preservation Act in 1966, and 'Preservation Areas for Historic Landscapes' and 'Special Preservation Districts for Historic Landscapes' were introduced. For the preservation of area-based heritage sites, the 'Important Preservation Districts for Groups of Traditional Buildings' system introduced as part of the revision of the Cultural Heritage Protection Act in 1975 was the beginning. Then, in the early-2000s, discussions on the preservation of area-based heritage sites began in earnest, and the 'Important Cultural Landscape' system was introduced for protection of the space and context between heritage sites. Also, '33 Groups of Modernization Industry Heritage Sites' were designated in 2007, covering various material and immaterial resources related to the modernization of Japan, and '100 Beautiful Historic Landscapes of Japan' were selected for protection of local landscapes with historic value in the same year. In 2015, the "Japanese Heritage" system was established for the integrated preservation and management of tangible and intangible heritage aspects located in specific areas; in 2016, the "Japanese Agricultural Heritage" system was established for the succession and fostering of the disappearing agriculture and fishery industries; and in 2017, "the 20th Century Heritage," was established, representing evidence of modern and contemporary Japanese technologies in the 20th century. As a result, presently (in September 2020), 30 'Historic Landscape Preservation Areas', 60 'Historic Landscape Special Districts,' 120 'Important Preservation Districts for Groups of Traditional Buildings," 65 'Important Cultural Landscapes,' 66 'Groups of Modernization Industry Heritage Sites,' 264 "100 Beautiful Historic Landscapes of Japan,' 104 'Japanese Heritage Sites,' and 15 'Japanese Agricultural Heritage Sites' have been designated. According to this perception of situations, the research process for this study with its basic purpose of extracting the general characteristics of Japan's area-based heritage preservation system, has sequentially spread since 1976 as follows. First, this study investigates Japan's area-based heritage site preservation system and sets the scope of research through discussions of literature and preceding studies. Second, this study investigates the process of the spread of the area-based heritage site preservation system and analyzes the relationship between the systems according to their development, in order to draw upon their characteristics. Third, to concretize content related to relationships and characteristics, this study involves in-depth analysis of three representative examples and sums them up to identify the characteristics of Japan's area-based heritage system. A noticeable characteristic of Japan's area-based heritage site preservation system drawn from this is that new heritage sites are born each year. Consequently, an overlapping phenomenon takes place between heritage sites, and such phenomena occur alongside revitalization of related industries, traditional industry, and cultural tourism and the improvement of localities as well as the preservation of area-based heritage. These characteristics can be applied as suggestions for the revitalization of the 'modern historical and cultural space' system implemented by South Korea.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

The View of Life and Death in Jeon-gyeong (『전경』에 나타난 대순사상의 생사관)

  • Cheng, Chihming
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.27
    • /
    • pp.79-132
    • /
    • 2016
  • The view of life and death in Daesoonjinrihoe includes all the gods of Heaven and Earth, and the human heart is taken as the foundational key. Practitioners can realize their value according to how much they have cultivated themselves. This is regarded as the mythical use of a singularly focused mind (full dedication of one's heart). In other words, it focuses on the potentiality of humans who are able to enter a transcendental area of divinity through their self-cultivation. This view of life and death in Daesoonjinrihoe was established by the religious mission known as "Samgye Gongsa (the Reordering of Three Realms of Heaven, Earth, and Humanity)." Samgye Gongsa indicated a new opening of the Three Realms of Heaven, Earth, and Humanity. This new opening is a return to the original principle of Heavenly operation and also a new order for the universe. Heaven and Earth have their own underlying principle by which they operate. This act was directly initiated and manifested from Dao. Daesoonjinrihoe diagnoses that the underlying principle by which Heaven operates was damaged by human misconduct, and as a result, the human observance of that principle fell out of common usage. Therefore, Daesoonjinrihoe gives priority to the reestablishment of Dao as it existed originally and tries to bring about reconciliation between Heaven and Earth and Humanity. In short, it resolves the grievances accrued since time immemorial by correcting the order of Sindo (Divine Law). Furthermore, it shows that the Dao of Sangsaeng (mutual beneficence) was created by reordering the arrangement of Heaven and Earth so that human beings and divine beings could reach a state of perfection through self-realization. Humans not only communicate with Heaven and Earth, but also communicate with divine beings. Divine beings are transcendent living beings capable of communicating with humans through their heart-minds. In Daesoon thought, human beings are not swayed by the power of divine beings, but instead are able to control divine beings through the transcendent power of their heart-minds. Given this view, the aim of Daesoonjinrihoe lies in participating in the harmony of Heaven and Earth through the cultivation of the human heart. Also, it sees that the human heart-mind can be united with the universal Dao, and thus it is able to be united with the deities of Heaven and Earth. In order to actualize this, one does not rely on exterior rituals or magic but has to focus instead on cultivating the moral ethics of the heart-mind to reach perfection. In other words, one can reach a transcendent level in one's heart-mind through the cultivation of a singularly focused mind and be free from the contradiction of life and death and other such torments. Life and death is an inevitable process for humans. So they do not have to be happy for life and sad for death. They can rather be free from the fear of death by fulfilling the energetic zenith of the human heart-mind via training themselves to transcend their physical bodies. No aging and no death is not a pursuit of radical longevity or immortality for the physical body, but rather a pursuit of the essence of life and the realization of eternity on a spiritual level. Daesoonjinrihoe pursues the state of being unified with Dao by developing "Jeong·Gi·Sin (精·氣·神 the internal energies of essence, pneuma, and spirit)" and trying to reach the transcendent state of non-aging and radical longevity by spurring the practice of self-realization and the discovery one's own innate nature. Through the practice of human ethics, they can access the creative functions of Heaven and Earth and become one with Heavenly Dao thereby achieving harmony between temporal existence and eternity. In this way, humans transcend the life and death of their physical bodies. When "Doins (trainees of Dao)" reach the true state of unification with Dao through singularly focused cultivation, they not only realize self perfection as human beings, but also enable themselves the means to do away with all disasters and forms of suffering. They thereby attain ultimate happiness in their lives.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

The Effects of Self-Determination on Entrepreneurial Intention in Office Workers: Focusing on the Dual Mediation of Innovativeness and Prception of the Startup Support System (직장인의 자기결정성이 창업의지에 미치는 영향: 혁신성과 창업지원정책인식의 이중매개를 중심으로)

  • Lim, Jae Sung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Recently, global business environment is changing dramatically along with the acceleration of technological innovation amid the war, climatic change, and geopolitical instability. Accordingly, it is difficult to predict or plan for the future as the volatility, complexity, ambiguity, and uncertainty of the industrial ecosystem continue to increase. Therefore, organizations are undergoing inevitable restructuring in accordance with their survival strategy, for instance, removing marginal businesses or firing. Accordingly, office workers are seeking a startup as an alternative for their continuous economic activity amid rising anxiety factors that make them think they would lose their jobs unintentionally. Here, this study is aimed to verify through what paths office workers' self-determination influences the process of converting to a startup. For this study, an online survey was carried out, and 310 respondents' valid data were analyzed through SPSS and AMOS. To sum up the results, first, office workers' self-determination did not have significant effects on entrepreneurial intention. However, it was confirmed that self-determination had positive (+) effects on innovativeness and perception of the startup support system. This result shows that their psychology works to prepare step by step by accumulating innovative experiences and increasing perception of the startup support system from a long-term life path perspective rather than challenging startups right way. Second, innovativeness is found to have positive (+) effects on entrepreneurial intention. Also, perception of the startup support system had positive (+) effects on entrepreneurial intention. This implies that when considering startups, they are highly aware of the government's various startup support systems. Third, innovativeness is found to have positive (+) effects on perception of the startup support system. It is judged that perception of the startup support system is valid for prospective founders to exhibit their innovativeness and realize new ideas. Fourth, it was confirmed that innovativeness and perception of the startup support system mediated correlation between self-determination and entrepreneurial intention, and perception of the startup support system mediated correlation between innovativeness and entrepreneurial intention, which shows that it is a crucial factor in entrepreneurial intention. Although previous studies related to startups deal with students mostly, this study targets office workers who form a great part in economic activities, which makes it academically valuable in terms of being differentiated from others and extending the scope of research. Also, when we consider the fact that the motivation for self-determination alone fails to stimulate entrepreneurial intention and the complete mediation of innovativeness and the startup support system, it has great implications in practical aspects such as the government's human and material support systems. In the selection and analysis of samples, this study exhibits a limitation that the problem of common method bias is not completely resolved. Also, additional definitive research is needed on whether entrepreneurial intention is formed and converted into startup behavior. Academically and practically, this study deals with the relationship between humans' psychological motives and startups which has not been handled sufficiently in previous studies. The conversion of office workers to startups is expected to have effects on individuals' economic stability and the state's job creation; therefore, it needs to be investigated continuously for its great value.

  • PDF

The Influence of Store Environment on Service Brand Personality and Repurchase Intention (점포의 물리적 환경이 서비스 브랜드 개성과 재구매의도에 미치는 영향)

  • Kim, Hyoung-Gil;Kim, Jung-Hee;Kim, Youn-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.141-173
    • /
    • 2007
  • The study examines how the environmental factors of store influence service brand personality and repurchase intention in the service environment. The service industry has been experiencing the intensified competition with the industry's continuous growth and the influence from rapid technological advancement. Under the circumstances, it has become ever more important for the brand competitiveness to be distinctively recognized against competition. A brand needs to be distinguished and differentiated from competing companies because they are all engaged in the similar environment of the service industry. The differentiation of brand achievement has become increasingly important to highlight certain brand functions to include emotional, self-expressive, and symbolic functions since the importance of such functions has been further emphasized in promoting consumption activities. That is the recent role of brand personality that has been emphasized in the service industry. In other words, customers now freely and actively express their personalities or egos in consumption activities, taking an important role in construction of a brand asset. Hence, the study suggests that it is necessary to disperse the recognition and acknowledgement that the maintenance of the existing customers contributes more to boost repurchase intention when it is compared to the efforts to create new customers, particularly in the service industry. Meanwhile, the store itself can offer a unique environment that may influence the consumer's purchase decision. Consumers interact with store environments in the process of,virtually, all household purchase they make (Sarel 1981). Thus, store environments may encourage customers to purchase. The roles that store environments play are to provide informational cues to customers about the store and goods and communicate messages to stimulate consumers' emotions. The store environments differentiate the store from competing stores and build a unique service brand personality. However, the existing studies related to brand in the service industry mostly concentrated on the relationship between the quality of service and customer satisfaction, and they are mostly generalized while the connective studies focused on brand personality. Such approaches show limitations and are insufficient to investigate on the relationship between store environment and brand personality in the service industry. Accordingly, the study intends to identify the level of contribution to the establishment of brand personality made by the store's physical environments that influence on the specific brand characteristics depending on the type of service. The study also intends to identify what kind of relationships with brand personality exists with brand personality while being influenced by store environments. In addition, the study intends to make meaningful suggestions to better direct marketing efforts by identifying whether a brand personality makes a positive influence to induce an intention for repurchase. For this study, the service industry is classified into four categories based on to the characteristics of service: experimental-emotional service, emotional -credible service, credible-functional service, and functional-experimental service. The type of business with the most frequent customer contact is determined for each service type and the enterprise with the highest brand value in each service sector based on the report made by the Korea Management Association. They are designated as the representative of each category. The selected representatives are a fast-food store (experimental-emotional service), a cinema house (emotional-credible service), a bank (credible-functional service), and discount store (functional-experimental service). The survey was conducted for the four selected brands to represent each service category among consumers who are experienced users of the designated stores in Seoul Metropolitan City and Gyeonggi province via written questionnaires in order to verify the suggested assumptions in the study. In particular, the survey adopted 15 scales, which represent each characteristic factor, among the 42 unique characteristics developed by Jennifer Aaker(1997) to assess the brand personality of each service brand. SPSS for Windows Release 12.0 and LISREL were used in the analysis of data verification. The methodology of the structural equation model was used for the study and the pivotal findings are as follows. 1) The environmental factors ware classified as design factors, ambient factors, and social factors. Therefore, the validity of measurement scale of Baker et al. (1994) was proved. 2) The service brand personalities were subdivided as sincerity, excitement, competence, sophistication, and ruggedness, which makes the use of the brand personality scales by Jennifer Aaker(1997) appropriate in the service industry as well. 3) One-way ANOVA analysis on the scales of store environment and service brand personality showed that there exist statistically significant differences in each service category. For example, the social factors were highest in discount stores, while the ambient factors and design factors were highest in fast-food stores. The discount stores were highest in the sincerity and excitement, while the highest point for banks was in the competence and ruggedness, and the highest point for fast-food stores was in the sophistication, The consumers will make a different respond to the physical environment of stores and service brand personality that are inherent to the corresponding service interface. Hence, the customers will make a different decision-making when dealing with different service categories. In this aspect, the relationships of variables in the proposed hypothesis appear to work in a different way depending on the exposed service category. 4) The store environment factors influenced on service brand personalities differently by category of service. The factors of store's physical environment are transferred to a brand and were verified to strengthen service brand personalities. In particular, the level of influence on the service brand personality by physical environment differs depending on service category or dimension, which indicates that there is a need to apply a different style of management to a different service category or dimension. It signifies that there needs to be a brand strategy established in order to positively influence the relationship with consumers by utilizing an appropriate brand personality factor depending on different characteristics by service category or dimension. 5) The service brand personalities influenced on the repurchase intention. Especially, the largest influence was made in the sophistication dimension of service brand personality scale; the unique and characteristically appropriate arrangement of physical environment will make customers stay in the service environment for a long time and will lead to give a positive influence on the repurchase intention. 6) The store environment factors influenced on the repurchase intention. Particularly, the largest influence was made on the social factors of store environment. The most intriguing finding is that the service factor among all other environment factors gives the biggest influence to the repurchase intention in most of all service types except fast-food stores. Such result indicates that the customers pay attention to how much the employees try to provide a quality service when they make an evaluation on the service brand. At the same time, it also indicates that the personal factor is directly transmitted to the construction of brand personality. The employees' attitude and behavior are the determinants to establish a service brand personality in the process of enhancing service interface. Hence, there should be a reinforced search for a method to efficiently manage the service staff who has a direct contact with customers in order to make an affirmative improvement of the customers' brand evaluation at the service interface. The findings suggest several managerial implications. 1) Results from the empirical study indicated that store environment factors have a strong positive impact on a service brand personality. To increase customers' repurchase intention of a service brand, the management is required to effectively manage store environment factors and create a friendly brand personality based on the corresponding service environment. 2) Mangers and researchers must understand and recognize that the store environment elements are important marketing tools, and that brand personality influences on consumers' repurchase intention. Based on such result of the study, a service brand could be utilized as an efficient measure to achieve a differentiation by enforcing the elements that are most influential among all other store environments for each service category. Therefore, brand personality established involving various store environments will further reinforce the relationship with customers through the elevated brand identification of which utilization to induce repurchase decision can be used as an entry barrier. 3) The study identified the store environment as a component of service brand personality for the store's effective communication with consumers. For this, all communication channels should be maintained with consistency and an integrated marketing communication should be executed to efficiently approach to a larger number of customers. Mangers and researchers must find strategies for aligning decisions about store environment elements with the retailers' marketing and store personality objectives. All ambient, design, and social factors need to be orchestrated so that consumers can take an appropriate store personality. In this study, the induced results from the previous studies were extended to the service industry so as to identify the customers' decision making process that leads to repurchase intention and a result similar to those of the previous studies. The findings suggested several theoretical and managerial implications. However, the situation that only one service brand served as the subject of analysis for each service category, and the situation that correlations among store environment elements were not identified, as well as the problem of representation in selection of samples should be considered and supplemented in the future when further studies are conducted. In addition, various antecedents and consequences of brand personality must be looked at in the aspect of the service environment for further research.

  • PDF

Optimum Radiotherapy Schedule for Uterine Cervical Cancer based-on the Detailed Information of Dose Fractionation and Radiotherapy Technique (처방선량 및 치료기법별 치료성적 분석 결과에 기반한 자궁경부암 환자의 최적 방사선치료 스케줄)

  • Cho, Jae-Ho;Kim, Hyun-Chang;Suh, Chang-Ok;Lee, Chang-Geol;Keum, Ki-Chang;Cho, Nam-Hoon;Lee, Ik-Jae;Shim, Su-Jung;Suh, Yang-Kwon;Seong, Jinsil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.143-156
    • /
    • 2005
  • Background: The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. Materials and Methods: The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of $23.4\~59.4$ Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-IBT) was also peformed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of $14.4\~43.2$ Gy (Median 36.0) of EBRT in 495 patients, while In the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder & rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ($\alpha/\beta$=10) and late-responding tissues ($\alpha/\beta$=3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED $Gy_3$ and the risk of complication was assessed using serial multiple logistic regression models. The associations between R-BED $Gy_3$ and rectal complications and between V-BED $Gy_3$ and bladder complications were assessed using multiple logistic regression models after adjustment for age, stage, tumor size and treatment duration. Serial Coxs proportional hazard regression models were used to estimate the relative risks of recurrence due to MD-BED $Gy_{10}$, and the treatment duration. Results: The overall complication rate for RTOG Grades $1\~4$ toxicities was $33.1\%$. The 5-year actuarial pelvic control rate for ail 743 patients was $83\%$. The midline cumulative BED dose, which is the sum of external midline BED and HDR-ICBT point A BED, ranged from 62.0 to 121.9 $Gy_{10}$ (median 93.0) for tumors and from 93.6 to 187.3 $Gy_3$ (median 137.6) for late responding tissues. The median cumulative values of actual rectal (R-BED $Gy_3$) and bladder Point BED (V-BED $Gy_3$) were 118.7 $Gy_3$ (range $48.8\~265.2$) and 126.1 $Gy_3$ (range: $54.9\~267.5$), respectively. MD-BED $Gy_3$ showed a good correlation with rectal (p=0.003), but not with bladder complications (p=0.095). R-BED $Gy_3$ had a very strong association (p=<0.0001), and was more predictive of rectal complications than A-BED $Gy_3$. B-BED $Gy_3$ also showed significance in the prediction of bladder complications in a trend test (p=0.0298). No statistically significant dose-response relationship for pelvic control was observed. The Sandwich and Continuous techniques, which differ according to when the ICR was inserted during the EBRT and due to the physicians preference, showed no differences in the local control and complication rates; there were also no differences in the 3 vs. 5 Gy fraction size of HDR-ICBT. Conclusion: The main reasons optimal dose-fractionation guidelines are not easily established is due to the absence of a dose-response relationship for tumor control as a result of the high-dose gradient of HDR-ICBT, individual differences In tumor responses to radiation therapy and the complexity of affecting factors. Therefore, in our opinion, there is a necessity for individualized tailored therapy, along with general guidelines, in the definitive radiation treatment for cervix cancer. This study also demonstrated the strong predictive value of actual rectal and bladder reference dosing therefore, vaginal gauze packing might be very Important. To maintain the BED dose to less than the threshold resulting in complication, early midline shielding, the HDR-ICBT total dose and fractional dose reduction should be considered.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.