• Title/Summary/Keyword: restrained concrete

Search Result 203, Processing Time 0.022 seconds

Tensile Behavior of Reinforced Concrete Member due to Restrained Shrinkage (구속된 건조수축이 철근콘트리트 인장거동에 미치는 영향)

  • 안태송;김진철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.315-320
    • /
    • 1998
  • The experimental set-up and one-dimensional analytical model have been developed to investigate the tensile behavior of reinforced concrete member due to restrained drying shrinkage. The experimental results have been compared with the analytical prediction of the maximum residual stress of steel and concrete due to restrained shrinkage. The tensile residual stress concrete by one-dimensional bilinear model shows 0.19 and 0.63 of tensile strength for 0.83% and 3.29 of steel ratio. The residual tensile stress of concrete increases as the steel ratio increases. The effect of steel fiber has not influenced the residual stress due to restrained shrinkage of concrete.

  • PDF

Evaluation on Water Vapor Pressure and Restrained Stress of Concrete by Ring-Type Restrained Condition (링형 강관 구속 조건에 의한 콘크리트의 수증기압력과 구속응력 평가)

  • Kim, Do-Yeon;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.27-28
    • /
    • 2018
  • In this study, water vapor pressure and restrained stress were evaluated by ring-type restrained condition for compressive strength 60 and 80MPa concrete. Experimental results show that the 80MPa concrete has higher water vapor pressure and restraint stress than the 60MPa concrete, resulting in spalling occurrence. It is because, the higher the compressive strength of the concrete, the more dense the internal structure is formed.

  • PDF

A Study on the Creep and Autogenous Shrinkage of High Performance Concrete with Expansive Additive and Shrinkage Reducing Admixtures at Early Age

  • Park, Sun-Gyu;Noguchi, Takafumi;Kim, Moo-Han
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.73-77
    • /
    • 2006
  • This paper shows a study of the efficiency of expansive additive and shrinkage reducing admixture in controlling restrained shrinkage cracking of high performance concrete at early age. Free autogenous shrinkage test of $100{\times}100{\times}400mm$ concrete specimens and simulated completely-restrained test with VRTM(variable restraint testing machine) were performed. Creep and autogenous shrinkage of high-performance concrete with and without expansive additive and shrinkage reducing admixture were investigated by experiments that provided data on free autogenous shrinkage and restrained shrinkage. The results showed that the addition of expansive additive and shrinkage reducing admixture effectively reduced autogenous shrinkage and tensile stress in the restrained conditions. Also, it was found that the shrinkage stress was relaxed by 90% in high-performance concrete with and without expansive additive and shrinkage reducing admixtures at early age.

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

Exact buckling load of a restrained RC column

  • Krauberger, Nana;Saje, Miran;Planinc, Igor;Bratina, Sebastjan
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.293-310
    • /
    • 2007
  • Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

Tensile Creep Properties of Concrete under Restrained Shrinkage (구속수축에 의한 콘크리트 인장크리프 특성)

  • Choi, Hoon-Jae;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.28-29
    • /
    • 2016
  • By Testing restrained shrinkage, it is possible to estimating the cracking tendency of concrete such as time to cracking, tensile stress and tensile creep. In this study, tensile creep properties of concrete under restraint shrinkage were investigation through comparison of specimens that JIS and AASHTO proposed. As a results, tensile creep strains in concrete ring specimens were 15% higher than those in uniaxial specimens.

  • PDF

Behavior factors for mixed reinforced concrete wall and buckling restrained braced frame

  • Hamid Beiraghi;Behdad Abbaspour
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.277-290
    • /
    • 2023
  • A supplementary reinforced concrete wall can be used to improve the seismic behavior of a buckling restrained braced frame as a mixed system. In such a novel system, the total lateral force is resisted by the combination of the RC wall system and the BRBF. There is not enough research on the response modification factor of such a mixed system. This paper investigates the response modification factor, and such relevant factors as ductility reduction factor and over strength factor for a system consisting of reinforced concrete wall and buckling restrained braced frame. To this purpose, nonlinear incremental dynamic analysis as well as static push over analysis are used for 6- to 14-story sample structures. The results show that for mixed considered systems, the mean value of response modification factor varies approximately from 7 to 9.

An Experimental Study on Seismic Reinforcement of Dry Type Buckling Restrained Braces Laterally Using Buckling Restrained Rings (좌굴방지링으로 횡지지된 건식형 좌굴방지가새 내진보강에 대한 실험적 연구)

  • Lee, Seon Jae;Moon, Hee Suk;Park, Byung Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2022
  • This study is conducted to verify the seismic reinforcement effects of internally inserted buckling-restrained braces supported laterally by buckling-restrained rings for the seismic reinforcement of existing reinforced concrete buildings with non-seismic details. First, to evaluate the performance of KDS, the hysteretic characteristics of buckling-restrained braces are verified, and it is discovered that they satisfy the conformance criteria of the displacement-dependent damping device. Three full-scale, two-story reinforced concrete framework specimens are prepared to verify the seismic reinforcement effects, and the proposed buckling-restrained braces are bolstered with single diagonal and V-shaped braces to be compared with non-reinforced specimens. By performing a comparison with non-reinforced specimens that present intensive shear cracks at the bottom of first-floor columns, it is revealed that the maximum load and energy dissipation of specimens reinforced with the proposed buckling restrained braces, in which the structural damage extends evenly throughout the system, are approximately 4 and 6.2 times higher, respectively, which proves the effectiveness of the proposed seismic reinforcement method.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

The Effect of Axial Force on the Behavior and Average Crack Spacing of Reinforced Concrete Flexural Member (축력이 철근콘크리트 휨부재의 거동과 평균 균열간격에 미치는 영향)

  • 양은익;김진근;이성태;임전사랑
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.207-214
    • /
    • 1997
  • This study was performed to verify the effect of axial force due to restraint on the mechanical behavior and the average crack spacing of the reinforced concrett. ilexural menlbers. For. this purpose, the flexural sttvngt.h and rigidity werc experimentally investigated undcl. axially rcstmined and unr.est.rainrd conditions. Furthermore , the average crack spacing was also checkcd for the axilly restrained contlit.ion. Thc test results showd that the flexual strength and rigidity of t,he restrained beam were higher. than those of the unrestrained beam. The major. factors affecting on the average crack spacing were steeel stress, axial force, cicumference of reinforcing bar and effective tension arm of concrete. However. the concrete compressive strength was minor effect. Including thesc factors, a prediction equation for the average crack spacing of the restrained member was proposed.