• Title/Summary/Keyword: response-adaptive design

Search Result 177, Processing Time 0.026 seconds

Product-Line Architecture Development for Self-Adaptive Software (적응형 소프트웨어를 위한 프로덕트 라인 아키텍처 개발)

  • Ye, Eun-Suk;Yeom, Keun-Hyuk;Moon, Mi-Kyeong
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.361-374
    • /
    • 2008
  • In the latest intelligent computing environments, the self-adaptive software, as new software paradigm, which modifies its own behavior in response to changes in its operating environment is needed. To develop the self-adaptive software, it is necessary to analyze and design the context of software as well as the structure and the behavior of software. We need more efforts for self-adaptive software development than for traditional software development because we need more activities and technologies like context modeling and adaptation to develop the self-adaptive software. In this paper, we present the product line architecture for self-adaptive software and templates of artifacts to improve the efficiency of development through a reuse methodology. The artifacts of the architecture support the systematic reuse activities of core assets by expressing the commonality and variability of product line.

A Study on High Performance Controller Design of Elastic Maniplator (탄성매니퓰레이터의 고성능 제어기 설계에 관한 연구)

  • Lee, Ji-U;Han, Seong-Hyeon;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.73-82
    • /
    • 1992
  • An industrial robot, installed real manufacturing processes an element of the system autmation, can be considered as an uncertain system due to dynamic uncertainties in inertial parameters and varying payloads. Most difficuties in controlling a robot manipulator are caused by the fact that the dynamic equations describing the motions of the manipulator are inherently nonlinear and heavily coupled effects between joints and associated links. Existing robot conrol systems have constant predefined gains and do not cover the complex dynamic interactions between manipulator joints. As a result, the manipulator is severly limited in range of application, speed of operation and variation of payload. The proposed controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories defined by the desinger. The proposed manipulator studied has two loops, an inner loop of model reference adaptive controller and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstailiy approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in practical working environment, various load variations and parameter uncertainties.

  • PDF

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Building Back Better: Distribution Dynamics in Post-Pandemic Urban Resilience

  • Choongik CHOI
    • Journal of Distribution Science
    • /
    • v.22 no.4
    • /
    • pp.69-77
    • /
    • 2024
  • Purpose: This paper aims to tackle the challenges and opportunities of cities' response to COVID-19 and provide cities with policy implications for better adapting to the post-pandemic era. Cities around the world are facing new challenges and have had to adapt to maintain social distancing measures while also addressing equity and social inclusion issues. Research design, data and methodology: The research methodology relies on an examination of existing literature, coupled with trend analysis employing discourse analysis to investigate post-pandemic urban resilience. The article also attempts to employ the concepts of adaptive urbanism and spatial flexibility and their potential to address these challenges not only in response to the pandemic, but also in the long-term. Results: The article explores the impact of COVID-19 on urban spatial structure through a public health lens and proposes actions that cities are able to take to enhance their resilience in the aftermath of the pandemic. Conclusions: It underscores the significance of reconstructing with improved distribution dynamics and provides valuable guidance for companies and policymakers on navigating these challenges. Ultimately, it also suggests that the pandemic has initiated a worldwide restructuring of urban planning, potentially leading to the emergence of smart cities grounded in science and technology.

Multi-Objective Optimal Design of a NEMA Design D Three-phase Induction Machine Utilizing Gaussian-MOPSO Algorithm

  • Zhang, Dianhai;Ren, Ziyan;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.184-189
    • /
    • 2014
  • This paper presents a multi-objective optimization approach to design rotor slot geometry of three-phase squirrel cage induction machine to achieve NEMA design D torque-speed (T-S) characteristics with high efficiency. The multi-objective Particle Swarm Optimization (MOPSO) algorithm combined with the adaptive response surface method and Latin hypercube sampling strategy is applied to obtain the Pareto optimal designs. In order to demonstrate the validity of the suggested optimal algorithm, an application to rotor slot design of three-phase induction motor is presented.

Experimental Design of Disturbance Compensation Control to Improve Stabilization Performance of Target Aiming System (표적지향 시스템의 안정화 성능 향상을 위한 실험적 외란 보상 제어기 설계)

  • Lim Jae-Keun;Kang Min-Sig;Lyou Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.897-905
    • /
    • 2006
  • This study considers an experimental design of disturbance compensation control to improve stabilization performance of main battle tanks. An adaptive non-parametric design technique based on the Filtered-x Least Mean Square(FXLMS) algorithm is applied in the consideration of model uncertainties. The optimal compensator is designed by two-step design procedures: determination of frequency response function of the disturbance compensator which can cancel the disturbance of series of single harmonics by using the FXLMS algorithm and determination of the compensator polynomial which can fit the frequency response function obtained in the first step optimally by using a curve fitting technique. The disturbance compensator is applied to a simple experimental gun-torsion bar-motor system which simulates gun driving servo-system. Along with experimental results, the feasibility of the proposed technique is illustrated. Experimental results demonstrate that the proposed control reduces the standard deviation of stabilization error to 47.6% that by feedback control alone. The directional properties of the FXLMS Algorithm such as the direction of convergence and its convergence speed are also verified experimentally.

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.

An Observer Design and Compensation of the Friction in an Inverted Pendulum using Adaptive Fuzzy Basis Functions Expansion (적응 법칙 기반의 퍼지 기초 함수를 이용한 도립진자의 마찰력 관측기 설계 및 마찰력 보상)

  • Park, Duck-Gee;Park, Min-Ho;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.335-343
    • /
    • 2007
  • This paper deals with the method to estimate the friction in a system. We study a nonlinear friction model to estimate the friction in an inverted pendulum and approximate the friction model using fuzzy basis functions expansion. To demonstrate the friction observer using FBFs, we derive a update rule based on the error term that is formed by the output from a real system and observer output with a friction estimate. And two compensation algorithms to improve the response of an inverted pendulum are proposed. The first method that a observer parameter is updated in on-line and the friction is compensated at the same time. The second method is to compensate the friction with observer parameter estimated priori. The two methods is compared through the experimental results.

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.