• Title/Summary/Keyword: response surface regression

Search Result 356, Processing Time 0.03 seconds

Optimization of Regression model Using Genetic Algorithm and Desirability Function (유전 알고리즘과 호감도 함수를 이용한 회귀모델의 최적화)

  • 안홍락;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.450-453
    • /
    • 1997
  • There are many studies about optimization using genetic algorithm and desirability function. It's very important to find the optimal value of something like response surface or regression model. In this study I ind~cate the problem using the old type desirability function, and suggest the new type desirabhty functton that can fix the problem better, and simulate the model. Then I'll suggest the form of desirability function to find the optimum value of response surfaces which are made by mean and standard deviation using genetic algorithm and new type desirability function.

  • PDF

Experimental analysis and modeling of steel fiber reinforced SCC using central composite design

  • Kandasamy, S.;Akila, P.
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.215-229
    • /
    • 2015
  • The emerging technology of self compacting concrete, fiber reinforcement together reduces vibration and substitute conventional reinforcement which help in improving the economic efficiency of the construction. The objective of this work is to find the regression model to determine the response surface of mix proportioning Steel Fiber Reinforced Self Compacting Concrete (SFSCC) using statistical investigation. A total of 30 mixtures were designed and analyzed based on Design of Experiment (DOE). The fresh properties of SCC and mechanical properties of concrete were studied using Response Surface Methodology (RSM). The results were analyzed by limited proportion of fly ash, fiber, volume combination ratio of two steel fibers with aspect ratio of 50/35: 60/30 and super plasticizer (SP) dosage. The center composite designs (CCD) have selected to produce the response in quadratic equation. The model responses included in the primary stage were flowing ability, filling ability, passing ability and segregation index whereas in harden stage of concrete, compressive strength, split tensile strength and flexural strength at 28 days were tested. In this paper, the regression model and the response surface plots have been discussed, and optimal results were found for all the responses.

Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System (반응표면법을 이용한 MLCC 자동 정렬 시스템의 운영조건 최적화)

  • Kim, Jae-Min;Chung, Won-Ji;Shin, O-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.582-588
    • /
    • 2010
  • This paper presents the Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System. his paper is composed of two parts: (1) Testing performance verification of MLCC alignment system, compared with manual operation; (2) Applying response surface method to figuring out the optimal transfer conditions of MLCC transfer system. Based on the successfully developed MLCC alignment system, the optimal transfer conditions have been explored by using RSM. The simulations using $ADAMS^{(R)}$ has been performed according to the cube model of CCD. By using $MiniTAB^{(R)}$, we have established the model of response surface based on the simulation results. The optimal conditions resulted from the response optimization tool of $MiniTAB^{(R)}$ has been verified by being assigned to the prototype of MLCC alignment system.

A Study on Optimal Cutting Conditions of MQL Milling Using Response Surface Analysis (반응표면분석을 이용한 MQL 밀링가공의 최적절삭조건에 관한 연구)

  • Lee, Ji-Hyung;Ko, Tae-Jo;Baek, Dae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Semi dry cutting known as MQL (Minimum Quantity Lubrication) machining is widely spreaded into the machining shops nowadays. The objective of this research is to suggest how to derive optimum cutting conditions for the milling process in MQL machining. To reach these goals, a bunch of finish milling experiments was carried out while varying cutting speed, feed rate, oil quantity, depth of cut and so on with MQL. Then, response surface analysis was introduced for the variance analysis and the regression model with the experimental data. Finally, desirability function based on regression model was used to obtain optimal cutting parameters and verification experiment was done.

Optimization of Finish Cutting Condition of Impeller with Five-Axis Machine by Response Surface Method (반응표면법을 이용한 5축 임펠러 정삭 가공의 최적화)

  • Lim, Pyo;Yang, Gyun-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.924-933
    • /
    • 2007
  • An impeller is a important part of turbo-machinery. It has a set of twisted surfaces because it consists of many blades. Five-axis machining is required to produce a impeller because of interference between tool and workpiece. It can obtain good surface integrity and high productivity. This paper proposes finish cutting method for machining impeller with 5-axis machining center and optimization of cutting condition by response surface method. Firstly, cutting methods are selected by consideration of operation characteristics. Secondly, response factors are determined as cutting time and cutting error for prediction of productivity. Experiments are projected by central composite design with axis point. Thirdly, regression linear models are estimated as single surface in the leading edge and as dual surface in the hub surface cutting. Finally, cutting conditions are optimized.

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

Polynomial Regression Analysis and Response Surface Methodology in Task-Technology Fit Research: The Case of GSS (Group Support Systems) (업무-기술적합(TTF) 영향에 대한 다차항 회귀분석과 반응표면 방법론적 접근: 그룹지원시스템(GSS)의 경우)

  • Kang, So-Ra;Kim, Min-Soo;Yang, Hee-Dong
    • Asia pacific journal of information systems
    • /
    • v.16 no.2
    • /
    • pp.47-67
    • /
    • 2006
  • This study takes a quantitative approach to the influence of TTF (Task-Technology Fit) on the individual's use and performance of GSS (Group Support Systems), while traditional studies on TTF have taken the experimental approach to explore the characteristic fit between diverse tasks and technologies. We have the following two research inquires: Are the IS use and performance maximized when information technologies are provided by the exact amount of demand?; and, Does TTF at the high level between task and IT produce better IS use (or performance) than at the low level? To investigate these issues, we use the polynomial regression analysis and response surface methodology of Edwards (1993) instead of traditional direct measure of TTF. This method measures the degree of desired and actual level of information technologies in conducting tasks, and traces the dynamic changes of dependent variables (IS use and performance) according to the variances of each independent variable. Our results conclude that user's IS use and performance are maximized when information technologies are actually provided by no more or less than the desired level. We also found that TTF at the high level promotes better IS use and performance than TTF at the low level.

Firework plot for evaluating the impact of influential observations in multi-response surface methodology (다반응 반응표면분석에서 특이값의 영향을 평가하기 위한 불꽃그림)

  • Kim, Sang Ik;Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.97-108
    • /
    • 2018
  • It has been routine practice in regression analysis to check the validity of the assumed model by the use of regression diagnostics tools. Outliers and influential observations often distort the regression output in an undesired manner. Jang and Anderson-Cook (Quality and Reliability Engineering International, 30, 1409-1425, 2014) proposed a graphical method (called a firework plot) so that there could be an exploratory visualization of the trace of the impact of the possible outliers and influential observations on individual regression coefficients and the overall residual sum of the squares measure. This paper further extends a graphical approach to a multi-response surface methodology problem.

Optimal Designs for Multivariate Nonparametric Kernel Regression with Binary Data

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • The problem of optimal design for a nonparametric regression with binary data is considered. The aim of the statistical analysis is the estimation of a quantal response surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived. The optimal design density with respect to asymptotic IMSE is constructed.

  • PDF