• Title/Summary/Keyword: response surface method (RSM)

Search Result 453, Processing Time 0.035 seconds

Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System (반응표면법을 이용한 MLCC 자동 정렬 시스템의 운영조건 최적화)

  • Kim, Jae-Min;Chung, Won-Ji;Shin, O-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.582-588
    • /
    • 2010
  • This paper presents the Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System. his paper is composed of two parts: (1) Testing performance verification of MLCC alignment system, compared with manual operation; (2) Applying response surface method to figuring out the optimal transfer conditions of MLCC transfer system. Based on the successfully developed MLCC alignment system, the optimal transfer conditions have been explored by using RSM. The simulations using $ADAMS^{(R)}$ has been performed according to the cube model of CCD. By using $MiniTAB^{(R)}$, we have established the model of response surface based on the simulation results. The optimal conditions resulted from the response optimization tool of $MiniTAB^{(R)}$ has been verified by being assigned to the prototype of MLCC alignment system.

Optimal Design of Permanent Magnet Linear Synchronous Motor(PMLSM) Considering Multiple Response by Response Surface Methodology(RSM) (영구자석 선형 동기전동기(PMLSM)의 반응표면법(RSM)을 이용한 다중 반응 최적설계)

  • Kim Sung-Il;Nam Hyuk;Kim Young-Kyoun;Hong Jung-Pyo;Cho Han-Ik
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1097-1099
    • /
    • 2004
  • This paper deals with the optimal design of a slotless type of permanent magnet linear synchronous motor (PMLSM). Response surface methodology, one of the optimization methods, is used to consider multiple response of the PMLSM. That is, it is applied to obtain more average thrust and less thrust ripple than prototype PMLSM. To analyze quickly, characteristic analysis of the PMLSM is performed by space harmonic method and final results of optimized PMLSM are compare with those of prototype PMLSM through finite element analysis.

  • PDF

Reliability Analysis of laminated Composite Panel using Response Surface Method (반응면 기법을 이용한 적층복합재료판의 신뢰성해석)

  • 방제성;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.187-190
    • /
    • 2001
  • Response surface method is applied to evaluate the reliability of laminated composite panels. Since the linear and nonlinear first-ply failure load are computed using deterministic finite element analysis, new probabilistic finite element analysis is not necessary. Tsai-Wu criterion is used to construct the limit state suface. Material properties, layer thickness and lamina strengths of laminated composite panel are treated as random design variables. feasibility and accuracy of current method is validated using Monte-Carlo method Which perform thousand times of finite element analysis directly.

  • PDF

Magnetic Circuit Design of BLDC Motor Using Response Surface Methodology (반응표면방법론을 이용한 BLDC 전동기의 자기회로 설계)

  • Lim, Yang-Soo;Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.904-906
    • /
    • 2001
  • This paper presents a magnetic circuit design procedure by using Response Surface Methodology(RSM) to determine initial and detail design parameters for reducing torque ripple in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variable Moreover, Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

  • PDF

Aerodynamic Design Optimization of Smart UAV Wing Airfoil (스마트 무인기 날개용 에어포일의 공력최적설계)

  • Park Y M.;Chung J D.;Kim Y. S.;Choi S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.193-196
    • /
    • 2004
  • Numerical optimization method of long endurance airfoil has been performed with a RSM(Response Surface Method) for smart UAV wing design. For the base line airfoil, NACA 64621 airfoil was selected and optimized to satisfy long endurance condition for smart UAV Aerodynamic coefficients required for RSM are obtained by using 2-D Navier-Stokes solver with Spalart-Allmaras turbulence model. The optimized airfoil showed increased maximum lift and endurance factors together with reasonable thickness ratio.

  • PDF

Optimum Design For Premium Efficiency of 250kW Traction Induction Motor Using Response Surface Methodology & FEM (반응표면법과 유한요소법을 이용한 250kW급 견인 유도전동기의 고효율을 위한 최적 설계)

  • Cho, Yong-Hyun;Lim, Hwang-Bin;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.782-783
    • /
    • 2008
  • This paper deals with optimum design criteria for premium efficiency of 250kW traction induction motor using response surface methodology (RSM) & finite element method (FEM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. The proposed procedure allows to define the rotor copper bar shape, stator slot and stator, rotor dimensions starting from an existing motor or a preliminary design.

  • PDF

Optimization of BLDC Motor for Reduction of Cogging Torque Using Response Surface Methodology (반응표면방법론에 의한 BLDC 전동기의 코깅토크저감을 위한 최적화)

  • Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.647-649
    • /
    • 2000
  • This paper presents a optimization procedure by using Response Surface Methodology(RSM) to determine design Parameters for reducing cogging torque in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

  • PDF

A Study on Numerical Approximation of Joint Stiffness of Vehicle Structures (차체 구조물 결합부 강성의 근사적 수식화에 관한 연구)

  • 박정률;이상범;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.155-163
    • /
    • 2001
  • Joint stiffnesses can affect the vibrational characteristics of car body structures and, therefore, should be included in vehicle system models. In this paper, a numerical approximation of joint stiffness is presented for considering joint flexibility of thin walled beam jointed structures. Using the proposed method, it is possible to optimize joint structures considering the change of section shapes in vehicle structures. The numerical approximation of joint stiffnesses is derived using the RSM(Response Surface Method) in terms of beam section properties. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.