• 제목/요약/키워드: response modification

검색결과 587건 처리시간 0.025초

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

응력보정계수 산정 방법 개선 (An Improvement for Determining Response Modification Factor in Bridge Load Rating)

  • 구봉근;신재인;이상순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.169-175
    • /
    • 2001
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. The response modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and response modification factor are investigated, and a new method for evaluating response modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

  • PDF

모멘트-연성 강구조물의 내진설계를 위한 반응수정계수의 평가 (Evaluation of Response Modification Factore for Earthquake Resistant Design of Moment-Resisting Steel Frames)

  • 송종걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.201-208
    • /
    • 1997
  • In most seismic codes such as the Uniform Building Code(UBC), the response modification factor(or the force reduction factor)is used to reflect the capability of a structure in dissipating energy through inelastic behavior. The response modification factor is assigned according to structural system type. Ductile systems such as special moment-resisting steel frames are assigned larger values of the response modification factor, and are consequently designed for smaller seismic design forces. Therefore, structural damage may occur during a severe earthquake. To ensure safety of the structures, the suitability of the response modification factor used in aseismic design procedures shall be evaluated. The object of this study is to develop a method for the evaluating of the response modification factor. The validity of the evaluating method has been examined for several cases of different structures and different earthquake excitations.

  • PDF

Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)

  • Abdollahzadeh, Gholamreza;Banihashemi, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제14권6호
    • /
    • pp.621-636
    • /
    • 2013
  • Response modification factor is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake, in conformity with the point that many seismic design codes led to reduce the loads. In the present paper it's tried to evaluate the response modification factors of dual moment resistant frame with buckling restrained braced (BRB). Since, the response modification factor depends on ductility and overstrength; the nonlinear static analysis, nonlinear dynamic analysis and linear dynamic analysis have been done on building models including multi-floors and different brace configurations (chevron V, invert V, diagonal and X bracing). The response modification factor for each of the BRBF dual systems has been determined separately, and the tentative value of 10.47 has been suggested for allowable stress design method. It is also included that the ductility, overstrength and response modification factors for all of the models were decreased when the height of the building was increased.

단주효과 및 고유주기를 고려한 비내진 학교시설의 반응 수정계수 (Response Modification Factors of Non-seismic School Buildings Considering Short Column Effects and Natural Period)

  • 김범석;박지훈
    • 한국지진공학회논문집
    • /
    • 제23권4호
    • /
    • pp.201-209
    • /
    • 2019
  • Response modification factors of school facilities for non-seismic RC moment frames with partial masonry infills in 'Manual for Seismic Performance Evaluation and Retrofit of School Facilities' published in 2018 were investigated in the preceding study. However, since previous studies are based on 2D frame analysis and limited analysis conditions, additional verification needs to be performed to further apply various conditions including orthogonal effect of seismic load. Therefore, this study is to select appropriate response modification factors of school facilities for non-seismic RC moment frames with partial masonry infills by 3D frame analysis. The results are as follows. An appropriate response modification factor for non-seismic RC moment frames with partial masonry infills is proposed as 2.5 for all cases if the period is longer than 0.6 seconds. Also if the period is less than 0.4 seconds and the ratio of shear-controlled columns is less than 30%, 2.5 is chosen too. However, if the period is less than 0.4 seconds and the ratio of shear-controlled columns is higher than 30%, the response modification factor shall be reduced to 2.0. If the period is between 0.4 and 0.6 seconds, then linearly interpolates the response correction factor.

Effect of Ni-Ti shape memory alloy on ductility and response modification factor of SPSW systems

  • Atefeh Khosravikhor;Majid Gholhaki;Omid Rezaifar;Ghasem Pachideh
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.353-365
    • /
    • 2023
  • Shape memory alloys (SMAs) have emerged as a novel functional material that is being increasingly applied in diverse fields including medical, aeronautical and structural engineering to be used in the active, passive and semi-active structural control devices. This paper is mainly aimed at evaluating the ductility and response modification factor of the steel plate shear wall (SPSW) frames with and without the Ni-Ti shape memory alloys. To this end, different configurations were utilized, in which the walls were used in the first, third, middle, and all stories. The models were numerically analyzed using OpenSees Software. The obtained results indicate that improving the shape memory properties of alloys can greatly enhance the ductility and response modification factor. Furthermore, the model whose first and third stories are equipped with the SMA shear wall was found to be 290% more ductile, with a greater response modification factor compared to the unequipped frame.

이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구 (Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System)

  • 이어진;홍성걸
    • 한국지진공학회논문집
    • /
    • 제15권1호
    • /
    • pp.39-48
    • /
    • 2011
  • 본 연구에서는 복강판-모듈러 시스템과 같이 구조 기준에 명시되지 않은 새로운 시스템의 반응수정계수를 산정하는 절차를 제안하였다. 기본 개념은 구조성능 실험결과를 바탕으로 모델링 된 시스템의 비선형 정적 해석 곡선으로부터 세부 구성요소인 초과강도계수와 연성계수의 도출하고, 단자유도 시스템으로 간주하고 평가된 반응수정계수를 다자유도 동적 거동을 고려한 다자유도 밑면전단 수정계수로 수정하여 시스템의 최종적인 반응수정계수를 결정하는 것이다. 제안한 절차에 따라 이중골조시스템으로 설계된 2층부터 5층까지의 복강판-모듈러 시스템에 대해 평가한 결과, 최종적인 반응수정계수는 5층(층고 4m기준)을 복강판-모듈러 시스템의 적용 가능한 층수의 상한으로 하여 4로 결정하는 것이 타당할 것으로 판단하였다.

Seismic Design of Structures in Low Seismicity Regions

  • 이동근;조소훈;고현
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

교량의 지진거동에 미치는 영향인자에 관한 연구 (A Study of influence factors on the bridge seismic behavior)

  • 최종만;국승규;김준범;정동원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF