• Title/Summary/Keyword: response amplitude reduction

Search Result 56, Processing Time 0.024 seconds

Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm

  • Park, Byeong-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.966-977
    • /
    • 2003
  • This paper investigates how intentional mistuning of bladed disks reduces their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional random mistuning. First, a pure optimization effort is undertaken to obtain the pattern (s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional random mistuning using Genetic Algorithm. Then, in the second step, a qualitative/quantitative estimate of the sensitivity for the optimized intentionally mistuned bladed disks with respect to unintentional random mistuning is performed by analyzing their amplification factor, probability density function and passband/stopband structures. Examples of application with simple bladed disk models demonstrate the significant benefits of using this class of intentionally mistuned disks.

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Temperature in Nerve Conduction and Electromyography (신경전도와 근전도검사에서의 체온)

  • Kim, Doo-Eung
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.125-134
    • /
    • 2006
  • Among the various physiological factors that affect nerve conduction velocity (NCV), temperature is the most important. Because the influence of temperature is the most important source of error. It is known from animal experiments that conduction is eventually completely blocked at low temperatures, the myelinated A fibers being the first affected and the thin fibers of group C the last. Many studies showed that the NCV decreases linearly with lowering temperature within the physiological range. The distal motor latency increased by $0.2msec/^{\circ}C$ drop in temperature between $25^{\circ}C$and $35^{\circ}C$ in the median, ulnar and peroneal nerves. The temperature affect the neuromuscular transmission; The miniature endplate potential (MEPP) and endplate potential (EPP) are increase with increasing temperature. In myasthenia gravis, the reduction in the decremental response is observed following cooling. The lowering temperature make increase the amplitude of sensory compound action potential; make enlarge the surface area of compound muscle action potential with very little increase in amplitude; make diminish the fibrillation potential and increase the myotonia in needle electromyography (EMG). Because of these findings mentioned above, the skin temperature should be routinely monitored and controlled during nerve conduction tests and needle EMG and should be taken into account when interpreting the findings.

  • PDF

Chaos on the Rocking Vibration of Rigid Block Under Two Dimensional Sinusodial Excitation (In the Case of No Sliding Occurrence) (2차원 정현파 가진을 받는 강체블록의 록킹진동에 있어서의 카오스 (미끄럼이 없는 경우에 대하여))

  • 정만용;김정호;김지훈;양광영;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.42-51
    • /
    • 1999
  • This research deals with the non-linearities associated with impact and sliding for the rocking behavior of rigid block subjected to two dimensional excitation of horizontal and vertical direction. The non-linearities examined of impact between block and base: The transition of two governing rocking equations, the abrupt reduction in kinetic energy associated with impact. In this study, the rocking vibration system of two types are considered for several friction condition. One is the undamped rocking vibration system, disregarding energy dissipation at impact and the other is the damped rocking system, including energy dissipation at impact. The response analysis by non-dimensional rocking equation is carried out for the change of excitation amplitude. The chaos responses were discovered in the wide response region, particularly, in the case of high vertical excitation and their chaos characteristics are examined by Poincare map, power spectra and Lyapunov Exponent. The complex behavior of chaos response, in the phase space, were illustrated by Poincare map. Therefore, Poincare map will be a significant material in order to understand chaos of rocking system.

  • PDF

'OFF' Response and Its Characteristics of Guinea Pig Ureter (기니픽 요관(尿管)에 있어서 OFF Response 발생과 그 특징)

  • Hong, K.W.;Rhim, B.Y.;Peter Binancani;Weiss Robert M.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.1 s.26
    • /
    • pp.25-34
    • /
    • 1980
  • The in vitro guinea pig ureter responded to 5 sec trains of electrical stimuli with two contractions; the first an 'on response' (ON) occurred with $0.1{\sim}0.3$ sec after the onset o the stimulus train, the second an 'off response'(OFF) occurred $0.2{\sim}1.0$ sec after the termination of the stimulus train. Relaxation occurred between the two responses during a time when the stimulus was still being delivered. Longer duration and/or higher frequencies of stimuli within the train were required to elicit the OFF than the ON. Decreasing temperature from $37^{\circ}$ to $22^{\circ}$ decreased ON amplitude and increased OFF amplitude. $Ca^{++}$-free solution, 2 mM EDTA, 1 mM $Mn^{++}$ or $1{\mu}M$ verapamil rapidly abolished ON. OFF persisted when ON had disappeared by repeated stimulation at 0.12 train per sec. Conversely, caffeine, $50{\mu}M$ and theophylline, $10{\mu}M$ abolished OFF with only slight reduction of ON, and sodium nitroprusside decreased preferentially ON amplitude rather than OFF. Relaxation between ON and OFF was incomplete in low $Na^+$ solution. ON and OFF were not affected by the neural blockers tetrodotoxin, atropine or phentolamine, also pyrilamine and methysergide, and relaxation between ON and OFF was $Na^+$ dependent. Furthermore, ON depends on free $Ca^{++}$ and OFF is more dependent on bound or stored $Ca^{++}$.

  • PDF

Reduction of Flow Induced Vibration in the Heat Exchanger of Thermal Power Plant (발전소 열교환기에서의 유동유발 진동저감)

  • Jang, Han-Kee;Kim, Seung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.633-638
    • /
    • 2000
  • This paper reports an example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration occurred at all around the unit. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34Hz. To identify the vibration, frequency analysis on the response vibration, the expected excitation force and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF

Reduction of Flow-Induced Vibration in the Heat Exchanger (열교환기에서의 유동유발 진동 저감)

  • 장한기;김승한;이재현;양정렬
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1200-1209
    • /
    • 1999
  • This paper reports a peculiar example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration was dtected at all around the plant. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34 Hz. To identify the vibration, frequency analysis on the response vibration as well as on the expected excitation forces and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

Vortex-induced oscillations of bridges: theoretical linkages between sectional model tests and full bridge responses

  • Zhang, Zhitian;Ge, Yaojun;Chen, Zhengqing
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.233-247
    • /
    • 2014
  • Vortex-induced oscillation is a type of aeroelastic phenomenon, to which extended structures such as long-span bridges are most susceptible. The vortex-induced vibration (VIV) behaviors of a concerned bridge were investigated conventionally in virtue of wind tunnel tests on string-mounted sectional models. This necessitates the building of a linkage between the response of the sectional model and that of the prototype structure. Although many released literatures have related to this issue and provided suggestions, there is a lack of consistency among them. In this study, some theoretical models describing the vortex-induced structural motion, including the linear empirical model, the nonlinear empirical model and the modified (or generalized) nonlinear empirical model, are firstly reviewed. Then, the concept of equivalent mass density is introduced based on the principle that an equal input of energy should result in identical structural amplitudes. Based on these, the theoretical linkages between the amplitude of a section model and that corresponding to the prototype bridge are discussed with different analytical models. Theoretical derivation indicates that such connections are dependent mainly on two factors, one is the presupposed shape of deformation, and the other is the theoretical VIV model employed. The theoretical analysis in this study shows that, in comparison to the nonlinear empirical models, the linear one can result in obvious larger estimations of the full bridges' responses, especially in cases of cable-stayed bridges.

Floor Impact Noise Reduction Performance of Double-Floor System in Apartments (공동주택 이중바닥구조의 바닥충격음 저감성능)

  • Baek, Gil-Ok;Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.197-202
    • /
    • 2014
  • Floor Impact Noise is a structure-borne noise which is mainly caused by vibration of concrete slabs. The majority of previous studies have focused on investigating performance of absorbing sheets on the reduction of floor impact noise. But absorbing sheets do not efficiently reduce heavy-weight floor impact noise level because it cannot absorb slab vibration, which is the fundamental noise source. In this study, double-floor system was developed in order to reduce floor impact noise level in residual buildings. This floor system reduces heavy-weight impact noise level by reducing vibration response at the center of slab, which has maximum amplitude in the 1st vibration mode. In order to identify the performance of the double-floor system, experiments were planned. Primary test parameters are span of double floor, arrangement and types of absorbing sheets.

  • PDF