• Title/Summary/Keyword: respiratory volume

Search Result 552, Processing Time 0.03 seconds

Effects of Sweet Bee Venom on the respiratory system in Rats (Sweet Bee Venom 시술이 Rat의 호흡기계에 미치는 영향)

  • Lee, Jong-Young;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2011
  • Objectives: This study was performed to analyse the effects of Sweet Bee Venom(SBV-purified melittin supported by G&V Co., the major component of honey bee venom) on the respiratory system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice(GLP). Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, SBV was administered in thigh muscle of rats in 0.175, 0.35 and 0.7 mg/kg dosage. And checked the effects of SBV on the respiratory system using the whole body plethysmography. And respiratory rate, tidal volume and minute volume of rats were checked after administered SBV (melittin). Results: 1. In the measurement of respiratory rate, there were not observed any significant differences compared with control group. 2. In the measurement of tidal volume, there was not observed any significant differences compared with control group. 3. In the measurement of minute volume, 0.35mg/kg dosage group showed significant differences compared with control group. But we estimated that this result was caused by individual differences. Conclusions: Above findings suggest that SBV seems to be safe treatment in the respiratory system of rats. And further studies on the subject should be conducted to yield more concrete evidences.

The Correlation between Abdominal Muscle Strength and Respiratory Function in Stroke Patients (뇌졸중 환자의 배근력과 호흡기능의 상관관계)

  • Kang, Tae-Wook;Lee, Jae-Seok;Han, Dong-Wook
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.303-310
    • /
    • 2019
  • Purpose: This study aimed to investigate the correlation between abdominal muscle strength and measures of respiratory function in stroke patients. Methods: The study participants comprised 17 (male: 12, female: 5) stroke patients hospitalized at W rehabilitation hospital in Busan, South Korea. Abdominal muscle strength was assessed using a digital manual dynamometer for 5 seconds contacting the sternal notch of the participants to bend the trunk. Respiratory function (forced vital capacity, forced expiratory volume in one second, forced expiratory volume in one second/forced vital capacity, and peak expiratory flow) was assessed using a spirometer. The collected data were analyzed using Pearson's correlation analysis, and the significance level was set 0.05. Results: A statistically significant correlation was found between abdominal muscle strength and forced vital capacity, forced expiratory volume in one second, and peak expiratory flow. However, abdominal muscle strength and forced expiratory volume in one second/forced vital capacity were not significantly correlated. Conclusion: This study demonstrated that there is a relationship between abdominal muscle strength and respiratory function. Exercise programs to strengthen the abdominal muscles are therefore necessary to improve respiratory function in stroke patients.

The Effect of Breathing Training Program and Swiss-ball Exercise on Respiratory Circulation Function and Tidal Volume (호흡운동 프로그램과 스위스 볼 운동이 호흡순환기능과 일회 환기량에 미치는 영향)

  • Kim, Byung-Kon;Lee, Myoung-Hee
    • PNF and Movement
    • /
    • v.12 no.3
    • /
    • pp.181-188
    • /
    • 2014
  • Purpose: The purpose of this current study is to compare the effectiveness of respiratory circulation function and tidal volume according to two different types of practice methods, in terms of breathing training program and abdominis muscle strengthening using a swiss ball. Methods: The subjects were consist 18 college students, were randomly and evenly assigned to either breathing training program group (BTG) or swiss-ball exercise group (SEG). Exercise program was applied for 60 minutes, 3 times a week, for 6 weeks. Before, after 3 weeks and after 6 weeks of exercises, the subjects were tested using the bruce protocol. The significance of differences between the BTG and the SEG was evaluated by analysis of two-way repeated measures ANOVA. Results: There was an increase in respiratory circulation function after both of exercise. Especially, there was significant difference between the before and after 6 weeks in the BTG. Also, change of respiratory circulation function in BTG was significantly greater than SEG. Tidal volume was no significant differences between the before and after 6 weeks in both groups. In addition, there was significant difference between BTG and SEG. Conclusion: These results suggest that direct breathing training program were more useful to improve of respiratory circulation function.

The Effect of Dynamic Neuromuscular Stabilization (DNS) on the Respiratory Function of Subjects with Forward Head Posture (FHP)

  • Bae, Won-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE: The purpose of this study was to apply dynamic neuromuscular stabilization (DNS) to subjects with forward head posture (FHP) and to compare its effects on respiratory function as against the conventional neck stabilization exercise and neck stretching and extensor strengthening exercises. METHODS: The whole-body posture measurement system was used to measure the degree of FHP, and a spirometer and a respiratory gas analyzer were used to measure the respiratory function. After the intervention was completed, the changes over time were analyzed in the DNS group, the neck stabilization exercise group, and the neck stretching and extensor strengthening exercise group. The inter-group difference in the changes was also analyzed. A repeated ANOVA was performed to compare the respiratory function according to the period between the three groups, and the least significant difference (LSD) method was used for the post hoc test. RESULTS: After the 6-week exercise period, respiratory functions, such as forced vital capacity (FVC), forced expiratory volume for 1 second (FEV1), forced expiratory volume for 1 sec/forced vital capacity (FEV1/FVC), maximum oxygen intake (VO2max), and the volume of expired gas (VE), significantly improved according to the period (p < .05), but no inter-group differences were found. CONCLUSION: DNS is an effective training method, and can be applied along with neck stabilization exercise and neck stretching and extensor strengthening exercises, which are widely used in clinical practice, to people with FHP who cannot directly perform neck exercises to improve their respiratory function.

The Effects of Training on the Proper Use of Respiratory Rate Measurement Devices for Providing High-Quality Artificial Ventilation

  • Jae-Ran Lim;Sung-Hwan Bang;Hyo-Suk Song;Gyu-Sik Shim;Ho-Jin Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.165-171
    • /
    • 2024
  • This study aims to investigate the appropriate volume of artificial ventilation and success rate when Basic - emergency medical Technician administer bag valve mask(BVM) artificial ventilation to patients experiencing respiratory failure or respiratory arrest using a respiratory rate measurement device. The research was conducted from December 11th to 12th, 2023, targeting 20 Basic - emergency medical Technicians enrolled at D University. Ten participants were selected for the experimental group, receiving BVM ventilation training with the use of a respiratory rate measurement device, while the other ten were assigned to the control group, receiving BVM ventilation training without the use of a respiratory rate measurement device. The experiment involved providing artificial ventilation for 2 minutes. The results of the study indicated that the control group did not provide accurate tidal volume (p=.025). The experimental group demonstrated a higher success rate of ventilation over the 2-minute period, while the control group showed a significant difference (p=.001). Subjective perception of tidal volume and objectively measured tidal volume also exhibited a significant difference in the control group (p=.010). Therefore, training with a respiratory rate measurement device can align the subjective perception of tidal volume with objective measurements, increase the success rate of ventilation, and potentially contribute to improving survival rates in patients experiencing respiratory failure or respiratory arrest during cardiopulmonary resuscitation.

Accuracy Evaluation of Tidal Volume Measured on the Abdomen (복부에서 측정하는 일회 호흡용적의 정확도 평가)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1298-1303
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. This study implemented respiratory monitoring system with the conductive rubber cord in the patient's pants in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%$ $CO_2$ was inhaled and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation significantly increased the tidal volume in normal physiological state with the subject unawared. The tidal volume estimated from the abdominal dimension change linearly correlated with the tidal volume measured by a pneumotachometer with a correlation coefficient of 0.88. Customized calibration for each subject resulted in relative errors less than 10%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

Evaluation of Dose According to the Volume and Respiratory Range during SBRT in Lung Cancer (폐암의 정위적 체부 방사선치료 시 체적 설정과 호흡주기에 따른 선량평가)

  • Lee, Deuk-Hee;Park, Eun-Tae;Kim, Jung-Hoon;Kang, Se-Seik
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.391-397
    • /
    • 2016
  • Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

Zigbee Based Wireless Respiration Monitor System (지그비 통신 기반의 근거리 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.142-147
    • /
    • 2008
  • Abdominal circumference changes due to breathing by the respiratory muscle activity such as diaphragm, which would partially represent the lung volume variation. The present study introduced conductive rubber molded in a cord shape incorporated with a patient's pants. The conductive rubber cord operated as a displacement transducer to measure the lung or abdominal volume changes. Signal extraction circuitry was developed to obtain the volume and its derivative(or the flow) signals followed by wireless transmission based on the Zigbee communication protocol in a size of $65mm{\times}105mm$ easily put in pocket. Breathing frequency was accurately evaluated and breath pattern analysis seemed feasible, since respiratory behaviours such as maximal inspiration and cough were well identified. Remote wireless receiver module also enabled to monitor both volume and flow signals during resting breathing on a PC terminal.

Wearable wireless respiratory monitoring system (의복착용형 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. The present study implemented wireless wearable respiratory monitoring system with the conductive rubber cord in the patient's pants. Signal extraction circuitry was developed to obtain the abdominal circumference changes reflecting the lung volume variation caused by respiratory activity. Wireless transmission was followed based on the zigbee communication protocol in a size of 65mm${\times}$105mm easily put in pocket. Successful wireless monitoring of respiration was performed in that breathing frequency was accurately estimated as well as different breathing patterns were easily recognized from the abdominal signal. $CO_2$ inhalation experiment was additionally performed in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%\;CO_2$was inhaled by 4 normal males and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation increased the tidal volume in normal physiological state with a correlation coefficient of 0.90 between the tidal volume and the end tidal $CO_2$ concentration. The tidal volume estimated from the abdominal signal linearly correlated with the accurate tidal volume measured by pneumotachometer with a correlation coefficient of 0.88 with mean relative error of approximately 8%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

Comparison and Evaluation of the Effectiveness between Respiratory Gating Method Applying The Flow Mode and Additional Gated Method in PET/CT Scanning. (PET/CT 검사에서 Flow mode를 적용한 Respiratory Gating Method 촬영과 추가 Gating 촬영의 비교 및 유용성 평가)

  • Jang, Donghoon;Kim, Kyunghun;Lee, Jinhyung;Cho, Hyunduk;Park, Sohyun;Park, Youngjae;Lee, Inwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • Purpose The present study aimed at assessing the effectiveness of the respiratory gating method used in the flow mode and additional localized respiratory-gated imaging, which differs from the step and go method. Materials and Methods Respiratory gated imaging was performed in the flow mode to twenty patients with lung cancer (10 patients with stable signals and 10 patients with unstable signals), who underwent PET/CT scanning of the torso using Biograph mCT Flow PET/CT at Bundang Seoul University Hospital from June 2016 to September 2016. Additional images of the lungs were obtained by using the respiratory gating method. SUVmax, SUVmean, and Tumor Volume ($cm^3$) of non-gating images, gating images, and additional lung gating images were found with Syngo,bia (Siemens, Germany). A paired t-test was performed with GraphPad Prism6, and changes in the width of the amplitude range were compared between the two types of gating images. Results The following results were obtained from all patients when the respiratory gating method was applied: $SUV_{max}=9.43{\pm}3.93$, $SUV_{mean}=1.77{\pm}0.89$, and $Tumor\;Volume=4.17{\pm}2.41$ for the non-gating images, $SUV_{max}=10.08{\pm}4.07$, $SUV_{mean}=1.75{\pm}0.81$, and $Tumor\;Volume=3.56{\pm}2.11$ for the gating images, and $SUV_{max}=10.86{\pm}4.36$, $SUV_{mean}=1.77{\pm}0.85$, $Tumor\;Volume=3.36{\pm}1.98$ for the additional lung gating images. No statistically significant difference in the values of $SUV_{mean}$ was found between the non-gating and gating images, and between the gating and lung gating images (P>0.05). A significant difference in the values of $SUV_{max}$ and Tumor Volume were found between the aforementioned groups (P<0.05). The width of the amplitude range was smaller for lung gating images than gating images for 12 from 20 patients (3 patients with stable signals, 9 patients with unstable signals). Conclusion In PET/CT scanning using the respiratory gating method in the flow mode, any lesion movements caused by respiration were adjusted; therefore, more accurate measurements of $SUV_{max}$, and Tumor Volume could be obtained from the gating images than the non-gating images in this study. In addition, the width of the amplitude range decreased according to the stability of respiration to a more significant degree in the additional lung gating images than the gating images. We found that gating images provide information that is more useful for diagnosis than the one provided by non-gating images. For patients with irregular signals, it may be helpful to perform localized scanning additionally if time allows.

  • PDF