• Title/Summary/Keyword: resource forwarding

Search Result 39, Processing Time 0.02 seconds

A D2D communication architecture under full control using SDN

  • Ngo, Thanh-Hai;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3435-3454
    • /
    • 2016
  • Device-to-device (D2D) communication is a potential solution to the incessant increase in data traffic on cellular networks. The greatest problem is how to control the interference between D2D users and cellular mobile users, and between D2D users themselves. This paper proposes a solution for this issue by putting the full control privilege in cellular network using the software-defined networking (SDN) concept. A software virtual switch called Open vSwitch and several components are integrated into mobile devices for data forwarding and radio resource mapping, whereas the control functions are executed in the cellular network via a SDN controller. This allows the network to assign radio resources for D2D communication directly, thus reducing interference. This solution also brings out many benefits, including resource efficiency, energy saving, topology flexibility, etc. The advantages and disadvantages of this architecture are analyzed by both a mathematical method and a simple implementation. The result shows that implementation of this solution in the next generation of cellular networks is feasible.

Hybrid FPMS: A New Fairness Protocol Management Scheme for Community Wireless Mesh Networks

  • Widanapathirana, Chathuranga H.;Sekercioglu, Y. Ahmet;Goi, Bok-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1909-1928
    • /
    • 2011
  • Node cooperation during packet forwarding operations is critically important for fair resource utilization in Community Wireless Mesh Networks (CoWMNs). In a CoWMN, node cooperation is achieved by using fairness protocols specifically designed to detect and isolate malicious nodes, discourage unfair behavior, and encourage node participation in forwarding packets. In general, these protocols can be split into two groups: Incentive-based ones, which are managed centrally, and use credit allocation schemes. In contrast, reputation-based protocols that are decentralized, and rely on information exchange among neighboring nodes. Centrally managed protocols inevitably suffer from scalability problems. The decentralized, reputation-based protocols lacks in detection capability, suffer from false detections and error propagation compared to the centralized, incentive-based protocols. In this study, we present a new fairness protocol management scheme, called Hybrid FPMS that captures the superior detection capability of incentive-based fairness protocols without the scalability problems inherently expected from a centralized management scheme as a network's size and density grows. Simulation results show that Hybrid FPMS is more efficient than the current centralized approach and significantly reduces the network delays and overhead.

Joint Resource Allocation Scheme for OFDM Wireless-Powered Cooperative Communication Networks

  • Liang, Guangjun;Zhu, Qi;Xin, Jianfang;Pan, Ziyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1357-1372
    • /
    • 2017
  • Energy harvesting techniques, particularly radio frequency energy harvesting (RF-EH) techniques, which are known to provide feasible solutions to enhance the performance of energy constrained wireless communication systems, have gained increasing attention. In this paper, we consider a wireless-powered cooperative communication network (WPCCN) for transferring energy in the downlink and forwarding signals in the uplink. The objective is to maximize the average transmission rate of the system, subject to the total network power constraint. We formulate such a problem as a form of wireless energy transmission based on resource allocation that searches for the joint subcarrier pairing and the time and power allocation, and this can be solved by using a dual approach. Simulation results show that the proposed joint optimal scheme can efficiently improve system performance with an increase in the number of subcarriers and relays.

Optimized Resource Allocation for Utility-Based Routing in Ad Hoc and Sensor Networks

  • Li, Yanjun;Shao, Jianji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1790-1806
    • /
    • 2015
  • Utility-based routing is a special type of routing approach using a composite utility metric when making routing decisions in ad hoc and sensor networks. Previous studies on the utility-based routing all use fixed retry limit and a very simple distance related energy model, which makes the utility maximization less efficient and the implementation separated from practice. In this paper, we refine the basic utility model by capturing the correlation of the transmit power, the retry limit, the link reliability and the energy cost. A routing algorithm based on the refined utility model with adaptive transmit power and retry limit allocation is proposed. With this algorithm, packets with different priorities will automatically receive utility-optimal delivery. The design of this algorithm is based on the observation that for a given benefit, there exists a utility-maximum route with optimal transmit power and retry limit allocated to intermediate forwarding nodes. Delivery along the utility-optimal route makes a good balance between the energy cost and the reliability according to the value of the packets. Both centralized algorithm and distributed implementations are discussed. Simulations prove the satisfying performance of the proposed algorithm.

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

Parametric study on multichannel analysis of surface waves-based nondestructive debonding detection for steel-concrete composite structures

  • Hongbing Chen;Shiyu Gan;Yuanyuan Li;Jiajin Zeng;Xin Nie
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.89-105
    • /
    • 2024
  • Multichannel analysis of surface waves (MASW) method has exhibited broad application prospects in the nondestructive detection of interfacial debonding in steel-concrete composite structures (SCCS). However, due to the structural diversity of SCCS and the high stealthiness of interfacial debonding defects, the feasibility of MASW method needs to be investigated in depth. In this study, synthetic parametric study on MASW nondestructive debonding detection for SCCSs is performed. The aim is to quantitatively analyze influential factors with respect to structural composition of SCCS and MASW measurement mode. First, stress wave composition and propagation process in SCCS are studied utilizing 2D numerical simulation. For structural composition in SCCS, the thickness variation of steel plate, concrete core, and debonding defects are discussed. To determine the most appropriate sensor arrangement for MASW measurement, the effects of spacing and number of observation points, along with distances between excitation points, nearest boundary, as well as the first observation point, are analyzed individually. The influence of signal type and frequency of transient excitation on dispersion figures from forwarding analysis is studied to determine the most suitable excitation signal. The findings from this study can provide important theoretical guidance for MASW-based interfacial debonding detection for SCCS. Furthermore, they can be instrumental in optimizing both the sensor layout design and signal choice for experimental validation.

Design of a High-Level Synthesis System for Automatic Generation of Pipelined Datapath (파이프라인 데이터패스 자동 생성을 위한 상위수준 합성 시스템의 설계)

  • 이해동;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.3
    • /
    • pp.53-67
    • /
    • 1994
  • This paper describes the design of a high-level synthesis system. SODAS-VP. which automatically generates hardwares executing operation sequences in pipelined fashion.Target architecture and clocking schemes to drive pipelined datapath are determined, and the handling of pipeline hazards which degrade the performance of pipeline is considered. Partitioning of an operation into load, operation, and store stages, each of which is executed in partitiones control step, is performend. Pipelinecl hardware is generated by handling pipeline hazards with internal forwarding or delay insertion techniques in partitioning process and resolving resource conflicts among the partitioned control steps with similarity measure as a priority function in module allocation process. Experimental results show that SODAS-VP generates hardwares that execute faster than those generated by HAL and ALPS systems. SODAS-VP brings improvement in execution speed by 17.1% and 7.4% comparing with HAL and ALPS systems for a MCNC benchmark program, 5th order elliptical wave filter,respectively.

  • PDF

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.

QoS Test in Diff-Serv Network using COPS (COPS기반 Diff-Serv 망에서의 QoS 테스트)

  • 채희성;한태만;정유현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.406-409
    • /
    • 2003
  • 본 논문에서는 인터넷 QoS(Quality of Service)보장을 위하여 제안된 Diff-Serv(Differentiated Service)모델을 구현하고, QoS 를 보장하지 않는 BE(Best Effort)서비스와 우선 순위가 높은 패킷을 처리하여 QoS 를 보장하는 EF(Expedited Forwarding) 서비스의 차이를 통하여 Diff-Serv 망의 우수성을 입증하고자 한다. Diff-Serv 망은 BB(Bandwidth Broker)와 에지라우터 그리고 다수의 코어라우터로 구성된다. BB 로부터 라우터에 QoS Policy를 전송하기 위하여 COPS(Common Open Policy Service) 프로토콜을 구현하였으며, 사용자와 BB 사이의 SLAT/RAR(Service Level Agreement/Resource Allocation Request)를 처리하기 위하여 Admission Control 이라는 명명한 자체 프로토콜을 개발하였다. 구현된 Diff-Serv 망에서 QoS 보장 테스트를 위하여 19.2Mbps 대역폭이 요구되는 HDTV 스트리밍 서비스를 이용하여 인위적으로 Background Traffic 을 발생시켰을 때, BE 서비스만을 지원하는 망에서는 현저하게 서비스의 질이 떨어지는 반면에 Diff-Serv 망에서는 QoS가 보장됨을 알 수 있었다.

  • PDF

The Mechanism to Apply RSVP-TE when Restoring the Path in GMPLS Network (GMPLS 망에서 경로 복구 시 RSVP-TE 적용방안)

  • 이준화;조평동;김상하
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.457-459
    • /
    • 2001
  • 오늘날 MPLS 망에서의 제어 부분(control plane)을 다양한 장치의 스위칭(switching)과 포워딩(forwarding) 기술 및 계층을 포함할 수 있도록 확장하기 위해서 IETF에서 GMPLS 망이 제안되고 있다. 그리고 망은 보호(protection)와 복구(restoration)를 통해서 망의 생존성(survivability)을 지원해야만 한다. 망은 어떤 장애에서도 서비스가 제공될 수 있어야 한다. 본 논문은 Kini에 의해서 제안된[5] MPLS망에서 망의 장애 시에 망의 생존성과 효율성을 고려해서 복구하기 위해서, 백업 패스(Backup Path)를 설정하는 방법을 GMPLS에서 적용하려고 한다. 즉, GMPLS 망에서 망에 장애가 발생했을 때 효율적으로 복구하기 위해서, RSVF-TE(resource Reservation Protocol with Traffic Engineering)를 이용해서 백업 패스를 잡는다.

  • PDF