• Title/Summary/Keyword: resource estimation

Search Result 591, Processing Time 0.029 seconds

Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio (수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향)

  • Kim, Kee Han;Oh, John Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.

A Study on the Positive Economic Values of Rain After a Long Drought: for the Rainfall Case of 20~21 April, 2009 (오랜 가뭄 뒤 내린 비에 대한 긍정적 측면의 경제적 가치 연구: 2009년 4월 20~21일 강수 사례 중심으로)

  • Lee, Young-Gon;Kim, Baek-Jo;Cha, Kee-Uk;Park, Gil-Un;Ryoo, Kyong-Sik
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.173-186
    • /
    • 2010
  • The impact of the precipitation has been focused on losses in social and economical sectors. However, as growing the concerns of the future water shortage caused by the climate change, the precipitation should be consider in various views for an effective planning in the water resource management. A precipitation case occurred from 20 to 21 April 2009 was recorded as a welcome rain because it reduced the severe drought continued in Korea from winter season of 2008. In this study, economic values of the event was calculated with positive aspects in various sectors. The estimation is based on four major parts such as a secure of water resources, the improvement of air quality, the decrease of forest fires, and the reduction of the drought impact. The water resources only considered inflow waters into dams and the reservoirs managed by Korean public institutions and their economic values accounts for 5.92 billion won. Decreases of four air pollutants($PM_{10}$, $NO_2$, CO, and $SO_2$) were considered as the positive effects of the rainfall and estimated 175.4 billion won. The preventive effect of the forest fire after the rainfall results in 0.48 billion won. Finally, the rainfall during the drought period is effective to reduce the social costs of 108.65 billion won. Although the economic values estimated in this study explain parts of the positive effects of the precipitation, it can help to develop a comprehensive and systematic valuation system for the whole process of the precipitation. For doing this, various rainfall types should be analyzed in social-economic terms including economics, environments and hydrology.

Estimating the Abundance of Antarctic Krill Euphausia superba Using a Commercial Trawl Vessel (상업어선의 어군탐지기를 이용한 남극크릴(Euphausia superba) 자원량 추정)

  • Choi, Seok-Gwan;Han, Inwoo;An, Doo-hae;Chung, Sang-deok;Yoon, Eun-A;Lee, Kyounghoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.435-443
    • /
    • 2018
  • The Antarctic krill Euphausia superba is important commercially and ecologically as a basic component of the Antarctic Ocean ecosystem. To manage this resource, it is important to determine the distribution and standing of krill in the water layer. Acoustic methods can capture information about the entire water layer quickly. Acoustic surveys were conducted from March 3 to March 14, 2017, using the commercial fishing boat Sejong (7,765 tons). Acoustic systems with a frequency of 38 kHz and a 200 kHz commercial echo sounder (ES70, Simrad, Norway) were used and the acquired data were processed using post processing software. The density and standing of Antarctic krill were determined using the two-frequency difference method, using the characteristics of two frequencies. To compare the frequency difference of krill, the method using the frequency difference according to the krill length, recommended by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the values extracted according to the krill length at survey stations where only krill were collected during the study period, were compared. The frequency difference ranges were 3.96-5.91 dB and -3.0~13.8 dB, respectively.

A Pilot Symbol Insertion Method for SC-FDMA Mobile Communication Systems (SC-FDMA 이동통신 시스템을 위한 파일럿 심벌 삽입 방법)

  • Rim, Min-Joong;Ryu, Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.48-56
    • /
    • 2007
  • OFDMA (Orthogonal Frequency Division Multiple Access) is widely used as multiple access techniques for next generation mobile communication systems. However, OFDMA has a disadvantage of high peak-to-average power ratio and SC-FDMA (Single-Carrier Frequency Division Multiple Access) was proposed for uplink systems to overcome the drawback. SC-FDMA also has several demerits including degraded performance with high-order modulations or with multiple antenna techniques, and less flexibility in resource allocation and pilot patterns. In order to achieve the best performance over a wide range of environments, each mobile station should select either of OFDMA and SC-FDMA according to the given condition and a pilot structure for SC-FDMA systems should be similar to that of OFDMA to maintain the same frame structure. While conventional SC-FDMA schemes require an entire SC-FDMA symbol or a separate short symbol for pilots, this paper proposes a method which supports the pilots included in SC-FDMA data parts and enables a SC-FDMA frame to hold the same structure as an OFDMA frame.

Modeling Heavy-tailed Behavior of 802.11b Wireless LAN Traffic (무선 랜 802.11b 트래픽의 두꺼운 꼬리분포 모델링)

  • Yamkhin, Dashdorj;Won, You-Jip
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.357-365
    • /
    • 2009
  • To effectively exploit the underlying network bandwidth while maximizing user perceivable QoS, mandatory to make proper estimation on packet loss and queuing delay of the underling network. This issue is further emphasized in wireless network environment where network bandwidth is scarce resource. In this work, we focus our effort on developing performance model for wireless network. We collect packet trace from actually wireless network environment. We find that packet count process and bandwidth process in wireless environment exhibits long range property. We extract key performance parameters of the underlying network traffic. We develop an analytical model for buffer overflow probability and waiting time. We obtain the tail probability of the queueing system using Fractional Brown Motion (FBM). We represent average queuing delay from queue length model. Through our study based upon empirical data, it is found that our performance model well represent the physical characteristics of the IEEE 802.11b network traffic.

  • PDF

A Study on the Analysis of LCA tools for Eco-Building (친환경 건축물의 LCA 평가도구 비교분석 연구)

  • Son, Woo-Jin;Kang, Hae-Jin;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-399
    • /
    • 2009
  • Since some decades ago, there has been a concern for resource depletion and environmental pollution associated with building properties. In addressing such impact of the built environment, there is a recognition of the existence of alternative building materials, fuels for energy supply as well as technologies for waste handling and disposal. Nevertheless, for long time, the choice between such alternatives was dictated by factors such as differences in prices and aesthetic values. A new important dimension in discriminating between different options is the environmental dimension. This aspect is important since buildings are one of the spatially big new additions to the natural environment that consume a lot of materials and energy during their long lifetime. Thus, with the environmental dimension kept in mind, a existing cost estimation needs to be changed. A new cost assessment method, Life Cycle Cost, should calculate overall costs with dimensional factors: investment and utility costs as well as maintenance costs over the lifetime of the building. Aiming to give an overview of the present status of Building Life Cycle Assessment(LCA) tools as a basis for further research and development including economic performance, this paper describes and compares 3 different tools for Life Cycle Assessment(LCA) and economic analysis of the green buildings. This paper compared these approaches based on various aspects. These include economic analysis method, evaluation duration, data of results(index). Use of the comparison analysis is to produce a better picture and indicate profits and shortcomings for the tools as a group; thus providing important direction improvement of LCA tool as well as further research and development of this group of tools.

  • PDF

Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River (낙동강 유역 내 하수처리구역의 비점 배출 부하량 분석)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.695-709
    • /
    • 2015
  • The inflow of nonpoint pollution sources due to sustainable development and urbanization is gradually increasing and causes a diversity of water pollution. There are lots of difficulties to find a solution as the problems related to variation of hydrological and natural phenomenon. A differentiated method to estimate the nonpoint pollution sources has been proposed using rainfall and characteristics of urbanization and observed data from sewage treatment districts in the study. The types of nonpoint pollution sources on an assumption of combined sewer system have been classified as three types which are inflow of rainfall, bypass of sewage treatments, and combined sewer overflows from a river. Three types for estimation of nonpoint pollution sources applied more accurately to generate a amount of nonpoint pollution loads. This study is expecting a wide application for effective water resource management on TMDL (total maximum delivery load) unit watershed and sewage treatment districts.

Retrieval of Key Hydrological Parameters in the Yellow River Basin Using Remote Sensing Technique

  • Dong, Jiang;Jianhua, Wang;Xiaohuan, Yang;Naibin, Wang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.721-727
    • /
    • 2002
  • Precipitation evapotranspiration and runoff are three key parameters of regional water balance. Problems exist in the traditional methods for calculating such factors , such as explaining of the geographic rationality of spatial interpolating methods and lacking of enough observation stations in many important area for bad natural conditions. With the development of modern spatial info-techniques, new efficient shifts arose for traditional studies. Guided by theories on energy flow and materials exchange within Soil-Atmosphere-Plant Continuant (SPAC), retrieval models of key hydrological parameters were established in the Yellow River basin using CMS-5 and FengYun-2 meteorological satellite data. Precipitation and evapotranspiration were then estimated: (1) Estimating tile amount of solar energy that is absorbed by the ground with surface reflectivity, which is measured in the visible wavelength band (VIS): (2) Assessing the partitioning of the absorbed energy between sensible and latent heat with the surface temperature, which was measured in the thermal infrared band (TIR), the latent heat representing the evapotranspiration of water; (3) Clouds are identified and cloud top levels are classified using both VIS and TIR data. Hereafter precipitation will be calculated pixel by pixel with retrieval model. Daily results are first obtained, which are then processed to decade, monthly and yearly products. Precipitation model has been has been and tested with ground truth data; meanwhile, the evapotranspiration result has been verified with Large Aperture Scintillometry (LAS) presented by Wageningen University of the Netherlands. Further studies may concentrate on the application of models, i.e., establish a hydrological model of the Yellow river basin to make the accurate estimation of river volume and even monitor the whole hydrological progress.

  • PDF

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Preprocessing Methods and Analysis of Grid Size for Watershed Extraction (유역경계 추출을 위한 DEM별 전처리 방법과 격자크기 분석)

  • Kim, Dong-Moon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Recent progress in state-of-the-art geospatial information technologies such as digital mapping, LiDAR(Light Detection And Ranging), and high-resolution satellite imagery provides various data sources fer Digital Elevation Model(DEM). DEMs are major source to extract elements of the hydrological terrain property that are necessary for efficient watershed management. Especially, watersheds extracted from DEM are important geospatial database to identify physical boundaries that are utilized in water resource management plan including water environmental survey, pollutant investigation, polluted/wasteload/pollution load allocation estimation, and water quality modeling. Most of the previous studies related with watershed extraction using DEM are mainly focused on the hydrological elements analysis and preprocessing without considering grid size of the DEMs. This study aims to analyze accuracy of the watersheds extracted from DEMs with various grid sizes generated by LiDAR data and digital map, and appropriate preprocessing methods.