Journal of Family Resource Management and Policy Review
/
v.8
no.1
/
pp.47-60
/
2004
Recognizing a tremendous increase in the Internet users and popularity of E-learning through the Internet, this study attempted to analyze interactive financial education web sites for children. Using meta search engines and major search engines, interactive financial education web sites identified based on the three criteria and analyzed in terms of the appropriateness for specific age groups, the coverage of contents related to the basic knowledge for financial literacy, and the interactive activities. The results showed that financial education web sites for children were needed to be improved in terms of both quantity and quality. The study also provides a guideline how to search for an appropriate financial education web sites for children when parents want teach about money to their children.
Enterprise Resource Planning(ERP) systems offer pervasive business functionality the applications encompass virtually all aspects of the business. Understanding and managing this pervasiveness will result in a successful and productive business application platform. Because of this pervasiveness, implementations have ranged from great successes to complete failures. This article has two distinctive parts. The first proposes and discusses a systematic process based on consulting experiences of LG CNS (leading information system company in Korea) for ERP selection. Also, the second provides the key factors that are critical to the successful implementation of ERP. The second part reports the results of a study carried out to assess a number of different ERP implementations in different organizations. A case study method of investigation was used, and the experiences of five Korean manufacturing companies were documented. The critical factors in the adoption of ERP are identified as: learning from the experiences of others, appointment of a process innovator, establishment of committees and project teams, training and technical support for the users, and appropriate changes to the organizational structure and managerial responsibilities.
International journal of advanced smart convergence
/
v.8
no.3
/
pp.145-150
/
2019
Due to the development of science and technology and the emergence of new industries, the environmental change of the digital contents industry is rapidly progressing. The scope of technological development in the digital contents industry is affecting not only the entertainment industry but also various industries. Recently, with the development of digital convergence using realistic content, games, video, and VR have provided new opportunities for the growth of the content industry. The researcher determined that a new education system would need to be changed as the digital contents industry developed. For this purpose, an AHP questionnaire was conducted for experts with a high basic understanding of the education platform based on previous studies. We proposed a platform model for human resource development as an education system that meets the demand of digital contents industry. The education system for nurturing talents needed by future society should include elements that can interest the learning of users. The platform should not be approached from a system point of view, but should be developed from the content and user's point of view, considering the platform's original purpose.
Alshomrani, Shroog;Aljoudi, Lina;Aljabri, Banan;Al-Shareef, Sarah
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.182-190
/
2021
Deep learning is an advanced technology for large-scale data analysis, with numerous promising cases like image processing, object detection and significantly more. It becomes customarily to use transfer learning and fine-tune a pre-trained CNN model for most image recognition tasks. Having people taking photos and tag themselves provides a valuable resource of in-data. However, these tags and labels might be noisy as people who annotate these images might not be experts. This paper aims to explore the impact of noisy labels on fine-tuning pre-trained CNN models. Such effect is measured on a food recognition task using Food101 as a benchmark. Four pre-trained CNN models are included in this study: InceptionV3, VGG19, MobileNetV2 and DenseNet121. Symmetric label noise will be added with different ratios. In all cases, models based on DenseNet121 outperformed the other models. When noisy labels were introduced to the data, the performance of all models degraded almost linearly with the amount of added noise.
S. Devipriya;J. Martin Leo Manickam;B. Victoria Jancee
ETRI Journal
/
v.45
no.6
/
pp.963-973
/
2023
Non-orthogonal multiple access (NOMA) is considered a key candidate technology for next-generation wireless communication systems due to its high spectral efficiency and massive connectivity. Incorporating the concepts of multiple-input-multiple-output (MIMO) into NOMA can further improve the system efficiency, but the hardware complexity increases. This study develops an energy-efficient (EE) subchannel assignment framework for MIMO-NOMA systems under the quality-of-service and interference constraints. This framework handles an energy-efficient co-training-based semi-supervised learning (EE-CSL) algorithm, which utilizes a small portion of existing labeled data generated by numerical iterative algorithms for training. To improve the learning performance of the proposed EE-CSL, initial assignment is performed by a many-to-one matching (MOM) algorithm. The MOM algorithm helps achieve a low complex solution. Simulation results illustrate that a lower computational complexity of the EE-CSL algorithm helps significantly minimize the energy consumption in a network. Furthermore, the sum rate of NOMA outperforms conventional orthogonal multiple access.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.3
/
pp.290-297
/
2024
We investigate the efficacy of ensemble learning methods, specifically the soft voting technique, for enhancing heart disease prediction accuracy. Our study uniquely combines Logistic Regression, SVM with RBF Kernel, and Random Forest models in a soft voting ensemble to improve predictive performance. We demonstrate that this approach outperforms individual models in diagnosing heart disease. Our research contributes to the field by applying a well-curated dataset with normalization and optimization techniques, conducting a comprehensive comparative analysis of different machine learning models, and showcasing the superior performance of the soft voting ensemble in medical diagnosis. This multifaceted approach allows us to provide a thorough evaluation of the soft voting ensemble's effectiveness in the context of heart disease prediction. We evaluate our models based on accuracy, precision, recall, F1 score, and Area Under the ROC Curve (AUC). Our results indicate that the soft voting ensemble technique achieves higher accuracy and robustness in heart disease prediction compared to individual classifiers. This study advances the application of machine learning in medical diagnostics, offering a novel approach to improve heart disease prediction. Our findings have significant implications for early detection and management of heart disease, potentially contributing to better patient outcomes and more efficient healthcare resource allocation.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.134-134
/
2022
Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.
Recently speech texts have been increasingly used for English education because of their various advantages as language teaching and learning materials. The purpose of this paper is to analyze speech texts in a corpus-based lexical approach, and suggest some productive methods which utilize English speaking or writing as the main resource for the course, along with introducing the actual classroom adaptations. First, this study shows that a speech corpus has some unique features such as different selections of pronouns, nouns, and lexical chunks in comparison to a general corpus. Next, from a collocational perspective, the study demonstrates that the speech corpus consists of a wide variety of collocations and lexical chunks which a number of linguists describe (Lewis, 1997; McCarthy, 1990; Willis, 1990). In other words, the speech corpus suggests that speech texts not only have considerable lexical potential that could be exploited to facilitate chunk-learning, but also that learners are not very likely to unlock this potential autonomously. Based on this result, teachers can develop a learners' corpus and use it by chunking the speech text. This new approach of adapting speech samples as important materials for college students' speaking or writing ability should be implemented as shown in samplers. Finally, to foster learner's productive skills more communicatively, a few practical suggestions are made such as chunking and windowing chunks of speech and presentation, and the pedagogical implications are discussed.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.3
/
pp.560-574
/
2011
In this paper, we propose a hybrid method of Machine Learning (ML) algorithm and a rule-based algorithm to implement a lightweight Named Entity (NE) extraction system for Korean SMS text. NE extraction from Korean SMS text is a challenging theme due to the resource limitation on a mobile phone, corruptions in input text, need for extension to include personal information stored in a mobile phone, and sparsity of training data. The proposed hybrid method retaining the advantages of statistical ML and rule-based algorithms provides fully-automated procedures for the combination of ML approaches and their correction rules using a threshold-based soft decision function. The proposed method is applied to Korean SMS texts to extract person's names as well as location names which are key information in personal appointment management system. Our proposed system achieved 80.53% in F-measure in this domain, superior to those of the conventional ML approaches.
International journal of advanced smart convergence
/
v.12
no.3
/
pp.104-108
/
2023
This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.