• Title/Summary/Keyword: resonant motion

Search Result 149, Processing Time 0.039 seconds

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependent on the Materials of the Stator (스테이터의 재질에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.891-895
    • /
    • 2005
  • Novel structure ultrasonic motors which have cross type stator were designed and fabricated. Driving characteristics of the motors were analyzed and measured by changing the materials of the stator. This ultrasonic motor has stator with hollowed cross bar and the stator rotate the rotor using elliptical displacement of the inside tips. This motion is generated by lateral vibration mode of cross bars. This stator was analyzed by finite element analysis depandent on stator's materials. And the cross type ultrasonic motors were made by analyzed results. The larger displacements were obtained, when the density of material was decreased. But the stress was increased when the stator's material has large density and Young's modulus. The fabricated one has high speed and torque in large stress on contact point between rotor and stator. The stress was more effected on speed and torque than the displacement.

Design and FEA of Linear Ultrasonic Motor Using Two Langevin Type Vibrator (2개의 란쥬반형 진동자를 이용한 선형 초음파 모터의 설계 및 FEA해석)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.634-637
    • /
    • 2002
  • Transducer for linear ultrasonic motor with symmetric and anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators. In order to excite two vibration modes, Two Langevin-type vibrators must have 90-degree phase difference with each other. As result, tip of transducers moves in elliptical motion. In this paper, vibration shape of transducer was simulated and The resonant frequency and maximum displacement were calculated using the FEA (Finite Element Analysis).

  • PDF

Linear Ultrasonic Motor by Bimorph (Bimorph 형 선형 초음파 모터)

  • Seo, San-Dong;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.404-407
    • /
    • 2004
  • Linear ultrasonic motor by bimorph. Transducer for linear ultrasonic motor with symmetric and anti-symmetric modes was studied. The transducer was composed of two piezoelectric ceramic that cross at right angles with each other at tip. In order to exist length vibration mode two piezoelectric ceramics must have 90-degree phase difference with each other. As a result, tip of transducer moves in elliptical motion. Elliptical trajectory of transducer was analyzed by employing the (mite element method(FEM). From the result, the linear ultrasonic motor was measured for characteristics. In this paper, vibration shape of transducer was simulated and the resonant frequency, stabilization frequency and maximum displacement were calculated using the FEA.

  • PDF

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Kim, Jong-Hyun;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.476-476
    • /
    • 2009
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appear, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

  • PDF

A Study on Nano-Motor of Giga-hertz level Resonance Characteristics (나노모터의 기가급 공진 특성에 대한 연구)

  • Song, Young-Jin;Lee, Jun-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • We investigated a linear carbon nanotube motor serving as the key building block for nano-scale motion control by using molecular dynamics simulations. This linear nano-motor, is based on the electrostatically telescoping multi-walled carbon-nanotube with ultralow intershell sliding friction, is controlled by the gate potential with the capacitance feedback sensing. The resonant harmonic peaks are induced by the interference between the driving frequencies and its self-frequency. The temperature is very important factor to operate this nanomotor.

Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits (다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제)

  • Moon, Seong-Hwan;Kim, Seung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Lee, Jong-Hyun;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

Analysis on the Velocity Characteristics of the Basilliar Membrane Motion in Cochlea (코클리어 기저막 운동의 속도특성 해석)

  • 최갑홍;강세호
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 1984
  • In this study, the general characteristics, and theories of cochlear concerning with hearing are examined. Also the digital method is studied in order to analyze with microcomputer on the model equation of basiliar membrane in the cochlear derived from 3-dimensional rectangular block model which is studied by Boer. The method is illustrated for the amplitude characteristics of basiliar momtrane wave velocity. The results obtained are as follows; 1. In the magnitude characteristics, the velocity gradually increases from the stapes, shows the maximum magnitude, and then rapidly decreases to the Helicotrema. 2. The characteristics of 3-dimensional model is located between 1-and 2- dimensional models in the velocity characteristics coefficients, magnitude characteristics, and the pattern of 2-dimensional model shoves the different features from the 1-dimensional and 3-dimensional rectangular block model. 3. In the 3-dimensional rectangular block model, the characteristics of the waveform and the maximum resonant point are same whether Z(X) is linear or nonlinear.

  • PDF

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF