• Title/Summary/Keyword: resonant circuit

Search Result 939, Processing Time 0.036 seconds

Implementation of Passive Elements Applied LTCC Substrate for 24-GHz Frequency Band (24 GHz 대역을 위한 LTCC 기판 적용된 수동소자 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, by applying LTCC substrate, the library of the passive elements is implemented. And it can be used in 24 GHz circuits. Depending on how to use it to the circuit, it is required large value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 24-GHz. By solving the limit, this paper devised passive elements classified for the DC and the high-frequency domain. The basic structure is suitable for low frequency under 1~2 GHz like DC. The microstrip λ/8 length stub structure is proposed to use for high-frequency like 24-GHz. The open and short stub structure operate as a capacitor and inductor respectively, also they have their impedances. Through their impedances, we can extract the value with the impedance-related equation. In this paper, the proposed passive elements are produced with the permittivity 7.5 LTCC substrate, the basic structure which are available in the DC constituted a library of capacitance of 2.35 to 30.44 pF and inductance of 0.75 to 5.45 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.44 to 2.89 pF and inductance of 0.71 to 1.56 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It will be an alternative to the passive elements that it is possible to integrate with the operation circuit of radar module for the frequency 24-GHz.

Analysis of Parameter Characteristic of Parallel Electrodes Conduction-cooled Film Capacitor for HF-LC Resonance (고주파 LC 공진을 위한 병렬전극 전도냉각 필름커패시터의 파라메타 특성 분석)

  • Won, Seo-Yeon;Lee, Kyeong-Jin;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.155-166
    • /
    • 2016
  • It is important to configure capacitance(C) of the capacitor and the induction coefficient(L) of the work coil on the resonant circuit design stage in order to induce heating on the object by a precise and constant frequency components in the electromagnetic induction heating equipment. Work coil conducts a direct induction heating according to heating point and area of the object which has a fixed heat factor so that work coil is designed to has fixed value. On the other hands, Capacitor should be designed to be changed in order to be the higher the utilization of the entire equipment. It is extracted the samples by variation of single electrode capacity from the selection stage of raw materials for capacity to the stage of process design for output of the high frequency LC resonance of 700kHz on 1000 VAC maximum voltage and current to $200I_{MAX}$. It is suggested fundamental experiment results in order to prove relation for the optimal design of HF-LC resonance conduction-cooled capacitor based on the response of frequency characteristics and results of output parameters according to variation of the capacitance size.

High Efficient Inductive Power Supply System Implemented for On Line Electric Vehicles

  • Huh, Jin;Park, Eun-Ha;Jung, Gu-Ho;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.105-110
    • /
    • 2009
  • The On Line Electric Vehicles(OLEV) that can pick up inductive power from underground coils on driving with high efficiency have been developed this year, and is now proposed in this paper. The IPS(Inductive Power Supply) system consists of power supply inverters, power supply rails, pick up modules, and a regulator. There are 3 generations of IPS have been developed so far, and the $4^{th}$ generation IPS is being developed. The $1^{st}$ generation has been demonstrated this Feb. 27, which is equipped with mechanically auto tracking pick-up module with 1cm air gap, and showed 80% power efficiency. The $2^{nd}$ generation IPS applied to an 120kW (average)/240kW(peak) motor powered electric bus has 17cm air gap with 72% power efficiency. For the $2^{nd}$ generation IPS, the Power supply inverter has 440V, 3phase input and 200A @ 20kHz output. The test power supply rail of 240m long is segmented by 60m each, where newly developed core structure and power cable are constructed under the road covered with asphalt of 5cm thickness. The pick-up modules which consist of core, winding wire, and rectifiers are fixed to the bottom of the bus which can carry more than 40 passengers and can pick up max. 60kW. To remove parasitic component and to transfer maximum power between them resonant circuit topology is applied to the primary and secondary sides. The EMF level is below 62.5mG at 1.75m from the center of the road to meet the regulation. Several effective ways of reducing EMF levels have been developed. In addition, effective ways to solve problems related high frequency power cables buried in ground and it's proof from soil have been studied also. This development shows that the IPS system is capable of supplying enough power to the pick-up of OLEV and can reduce battery size, weight and cost, which means the IPS with OLEV is one of the best candidate for EV.

  • PDF

A Study on T5 28W Fluorescent Lamp Ballast Using a Piezoelectric Transformer and One-chip Microcontroller (One Chip Microcontroller와 압전변압기를 이용한 T5 28W 형광등용 전자식 안정기에 관한 연구)

  • 황락훈;류주현;장은성;조문택;안익수;홍재일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2003
  • In this paper, T5 28-watt fluorescent lamp ballast using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed electronic ballast is composed of basic circuits and blocks, such as rectifier part, active power factor corrector part, frequency oscillation part using microcontroller and feedback control, piezoelectric transformer and resonant half bridge inverters. The fabricated ballast uses to variable frequency methode in external so exciting that the frequency of piezoelectric transformer could be generated by voltage control oscillator using microcontroller(AT90S4433). The current of fluorescent lamp is detected by feedback control circuit. The signal of inverter output is received using Piezoelectric transformer, and then its output transmitted to fluorescent lamp. Traditional electromagnetic ballasts operated at 50-60Hz have been suffered from noticeable flicker, high loss, large crest factor and heavy weight. A new electronic ballast is operated at high frequency about 75kHz, and then Input power factor, distortion of total harmonic and lamp current crest factor are measured about 0.9!35, 12H and 1.5, respectively Accordingly, the traditional ballast is by fabricated electronic ballast using piezoelectric transformer and voltage control oscillator because of its lighter weight, high efficiency, economic merit and saving energy.

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR (스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Lee, Sang-Min;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1078-1091
    • /
    • 2011
  • In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.

Highly Efficient 13.56 MHz, 300 Watt Class E Power Transmitter (13.56 MHz, 300 Watt 고효율 Class E 전력 송신기 설계)

  • Jeon, Jeong-Bae;Seo, Min-Cheol;Kim, Hyung-Chul;Kim, Min-Su;Jung, In-Oh;Choi, Jin-Sung;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.805-808
    • /
    • 2011
  • This paper presents a design of high-efficiency and high-power class E power transmitter. The transmitter is composed of 300 Watt class E power amplifier and AC-DC converter. The AC-DC converter converts 220 V and 60 Hz AC to a 290 V DC. The generated DC voltage is directly applied to a bias of the class E power amplifier. Because the converter does not have DC-DC converter unit, it has very high conversion efficiency of about 98.03 %. To minimize the loss at the output of the power amplifier, high-Q inductor was implemented and deployed to the output resonant circuit. As a result, the 13.56 MHz class E power amplifier has a high power-added efficiency of 84.2 % at the peak output power of 323.6 W. The overall efficiency of class E power transmitter, including the AC-DC converter, is as high as 82.87 %.

Fabrication of Piezoresistive Silicon Acceleration Sensor Using Selectively Porous Silicon Etching Method (선택적인 다공질 실리콘 에칭법을 이용한 압저항형 실리콘 가속도센서의 제조)

  • Sim, Jun-Hwan;Kim, Dong-Ki;Cho, Chan-Seob;Tae, Heung-Sik;Hahm, Sung-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.21-29
    • /
    • 1996
  • A piezoresistive silicon acceleration sensor with 8 beams, utilized by an unique silicon micromachining technique using porous silicon etching method which was fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon subtrates. The width, length, and thickness of the beam was $100\;{\mu}m$, $500\;{\mu}m$, and $7\;{\mu}m$, respectively, and the diameter of the mass paddle (the region suspended by the eight beams) was 1.4 mm. The seismic mass on the mass paddle was formed about 2 mg so as to measure accelerations of the range of 50g for automotive applications. For the formation of the mass, the solder mass was loaded on the mass paddle by dispensing Pb/Sn/Ag solder paste. After the solder paste is deposited, Heat treatment was carried out on the 3-zone reflow equipment. The decay time of the output signal to impulse excitation of the fabricated sensor was observed for approximately 30 ms. The sensitivity measured through summing circuit was 2.9 mV/g and the nonlinearity of the sensor was less than 2% of the full scale output. The output deviation of each bridge was ${\pm}4%$. The cross-axis sensitivity was within 4% and the resonant frequency was found to be 2.15 KHz from the FEM simulation results.

  • PDF

Fabrication of Inductors, Capacitors and LC Hybrid Devices using Oxides Thin Films (산화물 박막을 이용한 인덕터, 캐패시터 및 LC 복합 소자 제조)

  • Kim, Min-Hong;Yeo, Hwan-Guk;Hwang, Gi-Hyeon;Lee, Dae-Hyeong;Kim, In-Tae;Yun, Ui-Jun;Kim, Hyeong-Jun;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.175-179
    • /
    • 1997
  • bliniaturization oi microwave circuit components is an important issue with the development in the mobile communication. Capacitors, inductors anti hybrid devices of these are building blocks of electric circuits, and the fabrication of these devices using thin film technology will influence on the miniaturization of electronic devices In this paper, we report the successful fabrication of the inductors, capacitors and LC hybrid devices using a ferroelectric and a ferromagnetic oxide thin iilm. Au, stable at high temperatures in oxidizing ambient, is patterned by lift-off process, and oxide thin films are deposited by ion beam sputtering and chemical vapor deposition. These devices are characterized by a network analyzer in 0.5-15GtIz range We got the inductance of 5nH, capacitance oi 10, 000 pF and resonant frequencies of $10^{6}-10^{9}Hz$.

  • PDF