• Title/Summary/Keyword: resonance cyclization

Search Result 7, Processing Time 0.022 seconds

Application of Suspension-Polymerized Spherical PAN beads as a Precursor of Spherical Activated Carbon (현탁중합으로 합성된 구형 PAN 수지의 구형 활성탄의 전구체로서의 활용)

  • Hyewon, Yeom;Hongkyeong, Kim
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • Polyacrylonitrile was synthesized through suspension polymerization and then sieved to obtain spherical beads with a size of 200~510 ㎛. PAN was copolymerized with 2 mol% MMA monomer which is known to promote cyclization and crosslinking of nitrile group. The resonance cyclization reaction of the nitrile group in the synthesized PAN beads was observed near 170℃ with thermal analysis and FT-IR. The reaction conversion of the nitrile group in spherical beads was 23% during heat treatment, which was lower than that of the well-oriented PAN fiber used as a precursor of carbon fiber. This is because the stereo-regularity of molecular chains in the form of a random coil (spherical bead) is much lower than that of PAN fiber. It was confirmed that the compressive strength of the spherical PAN bead was greatly improved through the resonance cyclization and shrinkage according to the heat treatment, and it was also observed that the pores in PAN beads were formed after the heat treatment.

Polyhydroxyamic Acid from 3,3′ - Dihydroxybenzidine and Pyromellitic Dianhydride as a Fire-safe Polymer

  • Park, Seung Koo;Farris, Richard J.;Kantor, Simon W.
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • In order to assess the potential of the hydroxy-containing polyamic acid (PHAA) synthesized from 3,3'-dihydroxy benzidine and pyromellitic dianhydride for a fire-safe polymer, the cyclization pathway of PHAA has been investigated using a model compound prepared from 2-aminophenol and phthalic anhydride. The reaction was monitored. by $^1{H-nuclear}$ magnetic resonance. N-(2-hydroxyphenyl) phthalamic acid is converted to N-(2-hydroxyphenyl) phthalimide at ca. 175$^{\circ}C$, showing endothermic reaction. The imide structure is rearranged to the benzoxazole structure over ca. $400^{\circ}C$. These results are similar with that of PHAA. According to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) data, water and carbon dioxide are released during the cyclization and rearrangement reaction. One DMAc molecule is complexed with one carboxyl acid group in PHAA, which accelerates the imidization process to release more easily the flame retardant, water.

Synthesis of Cyclic Antifreeze Glycopeptide and Glycopeptoids and Their Ice Recrystallization Inhibition Activity

  • Ahn, Mija;Murugan, Ravichandran N.;Shin, Song Yub;Kim, Eunjung;Lee, Jun Hyuck;Kim, Hak Jun;Bang, Jeong Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3565-3570
    • /
    • 2012
  • Until now, few groups reported the antifreeze activity of cyclic glycopeptides; however, the tedious synthetic procedure is not amenable to study the intensive structure activity relationship. A series of N-linked cyclic glycopeptoids and glycopeptide have been prepared to evaluate antifreeze activity as a function of peptide backbone cyclization and methyl stereochemical effect on the rigid Thr position. This study has combined the cyclization protocol with solid phase peptide synthesis and obtained significant quantities of homogeneous cyclic glycopeptide and glycopeptoids. Analysis of antifreeze activity revealed that our cyclic peptide demonstrated RI activity while cyclic glycopeptoids showed no RI activity. These results suggest that the subtle changes in conformation and Thr orientation dramatically influence RI activity of N-linked glycopeptoids.

Cyclo-depolymerization of Poly (ethylene Terephthalate-co-ethylene Isophthalate)s (폴리에틸렌테레프탈레이트-코-에틸렌이소프탈레이트의 고리해중합)

  • Yoo, Dong-Il;Lee, Eung-Eui;Shin, Youn-Sook
    • Textile Coloration and Finishing
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Oligomeric extracts of poly(ethylene terephthalate-co-ethylene isophthalate)s [(PET/EI] are analyzed by high performance liquid chromatography(HPLC) and nuclear magnetic resonance spectroscopy (NMR). Existence of separated peaks for small cyclics of trimer and tetramer gives the existence of structural isomeric forms. NMR confirms that cyclization of PET/EI occurs more easily at the site of isophthaloyl unit.

  • PDF

Intramolecualr cyclization of a dipyrromethane by an electrophilic aromatic substitution reaction producing a new chiral compound

  • Kim, Seung Hyun;Kim, Sung Kuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.115-118
    • /
    • 2018
  • Dipyrromethane 2 functionalized with 3-chloropropyl group on the meso carbon undergoes an unusual intramolecular electrophilic aromatic substitution reaction in the presence of $NaN_3$ instead of a simple nucleophilic substitution reaction. As a result, a new chiral dipyrromethane 1 was synthesized. In this reaction, the ${\beta}$-carbon of the pyrrole ring functions as a nucleophile while the carbon next to the chlorine atom acts as an electrophile. Interestingly, this reaction progresses even in the absence of an acid catalyst. Compound 1 was fully characterized by $^1H-^1H$ and $^1H-^{13}C$ COSY NMR spectroscopic analyses and the high resolution EI mass spectrometry.

Polymerization and Thermal Characteristics of Acrylonitrile/Dicyclohexylammonium 2-Cyanoacrylate Copolymers for Carbon Fiber Precursors

  • Kim, Ki-Young;Park, Woo-Lee;Chung, Yong-Sik;Shin, Dong-Geun;Han, Jin-Wook
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study experimentally investigated dicyclohexylammonium 2-cyanoacrylate (CA) as a potential comonomer for polyacrylonitrile (PAN) based carbon fiber precursors. The P(AN-CA) copolymers with different CA contents (0.19-0.78 mol% in the feed) were polymerized using solution polymerization with 2,2-azobis(isobutyronitrile) as an initiator. The chemical structure and composition of P(AN-CA) copolymers were determined by proton nuclear magnetic resonance and elemental analysis, and the copolymer composition was similar to the feeding ratio of the monomers. The effects of CA comonomer on the thermal properties of its copolymers were characterized differential scanning calorimetry (DSC) in nitrogen and air atmospheres. The DSC curves of P(AN-CA) under nitrogen atmosphere indicated that the initiation temperature for cyclization of nitrile groups was reduced to around $235^{\circ}C$. The heat release and the activation energy for cyclization reactions were decreased in comparison with those of PAN homopolymers. On the other hand, under air atmosphere, the P(AN-CA) with 0.78 mol% CA content showed that the initiation temperature of cyclization was significantly lowered to $160.1^{\circ}C$. The activation energy value showed 116 kJ/mol, that was smaller than that of the copolymers with 0.82 mol% of itaconic acids. The thermal stability of P(AN-CA), evidenced by thermogravimetric analyses in air atmosphere, was found higher than PAN homopolymer and similar to P(AN-IA) copolymers. Therefore, this study successfully demonstrated the great potential of P(AN-CA) copolymers as carbon fiber precursors, taking advantages of the temperature-lowering effects of CA comonomers and higher thermal stability of the CA copolymers for the stabilizing processes.

Development of Macrocyclic Ligands for Stable Radiometal Complexes (안정한 방사금속 착물을 위한 거대고리 리간드 개발)

  • Yoo, Jeong-Soo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.215-223
    • /
    • 2005
  • Current interest in the regioselective N-functionalization of tetraazacycloalkanes (cyclen and cyclam) stems mainly from their complexes with radioactive metals for applications in diagnostic ($^{64}Cu,\;^{111}In,\;^{67}Ga$) and therapeutic ($^{90}Y$) medicine, and with paramagnetic ions for magnetic resonance imaging ($Gd^{+3}$). Selective methods for the N-substitution of cyclen and cyclam is a crucial step in most syntheses of cyclen and cyclam-based radiometal complexes and bifunctional chelating agents. In addition, mixing different pendent groups to give hetero-substituted cyclen derivatives would be advantageous in many applications for fine-tuning the compound's physical properties. So far, numerous approaches for the regioselective N-substitution of tetraazacycloalkanes and more specifically cyclen and cyclam are reported. Unfortunately, none of them are general and every strategy has its own strong points and drawbacks. Herein, we categorize numerous regioselective N-alkylation methods into three strategies, such as 1) direct substitution of the macrocycle, 2) introductiou of the functional groups prior to cyclization, and 3) protection/iunclionallrationideproteclion. Our discussion is also split into the methods of mono- and tri-functionalization and di-functionalizataion based on number of substituents. At the end, we describe new trials for the new macrocycles which iorm more stable metal complexes with various radiometals, and briefly mention the commercially available tetraazacycloalkanes which are used for the biconjugation of biomolecules.