• Title/Summary/Keyword: resonance

Search Result 11,643, Processing Time 0.044 seconds

A New Method for Extracting Resonance Information in Acoustic Wave Resonance Scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.409-417
    • /
    • 1999
  • A new method is proposed for the isolation of resonances from scattered waves for the isolaton of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitudes of the resonances from each partial wave, however, the phases are significantly different. The exact $\pi$-radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the differences in phases of the resonances from each partial wave, the new method and RST generate different total resonance spectra.

  • PDF

Elastic Wave Resonance Scattering from a Fluid-filled Cylindrical Cavity (유체가 채워진 실린더형 공동에 의한 탄성파 공명 산란 해석)

  • Huinam Rhee;Park, Youngjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.208-213
    • /
    • 2002
  • A new method is presented for the isolation of resonances from scattered waves for elastic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Elastic wave resonance scattering from a water-filled cylindrical cavity imbedded in an aluminum matrix is numerically analyzed. The classical resonance scattering theory and the new method compute different magnitudes and phases of the resonances from each partial wave, and therefore. their total resonance spectra are quite different. The exact $\pi$ - radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer compared to resonance scattering theory.

  • PDF

A Study on Frequency-Modulated Methods for Reducing Acoustic Resonance in HID Lamp (고압방전램프의 음향공명감소를 위한 주파수변조에 관한 연구)

  • Kim, Gi-Jung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.622-626
    • /
    • 2001
  • HID(high intensity discharge)lamps are high pressure mercury lamp, high pressure sodium lamp and metalhalide lamp. metalhalide lamp among these lamps has considered to be one of the most effective artificial light sources and this lamp has good efficiency, good color rendition and good focusing capability, But the shortcorning of metalhalide lamp is known as acoustic resonance phenomena in the discharge tube when lighted by electronic ballast and then acoustic resonance cause various problems such as the arc instability, light output fluctuations. In this paper, to reduce the acoustic resonence phenomena, the electronic ballast was designed by three methods for high frequency operation wish frequency-modulated sinusodial waves in acoustic resonance frequency band. These frequency-modulated methods are resonance frequency and resonance frequency, resonance frequency and non-resonance frequency non-resonance frequency and non-resonance frequency Experiment results could't show the Presence of acoustic resonance visually and it proved that the resonance-generating conditions can be avoided by continuously changing the two operating frequencies in acoustic resonance band (20.59kHz∼94.2kHz).

  • PDF

Resonance Elastic Scattering and Interference Effects Treatments in Subgroup Method

  • Li, Yunzhao;He, Qingming;Cao, Liangzhi;Wu, Hongchun;Zu, Tiejun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.339-350
    • /
    • 2016
  • Based on the resonance integral (RI) tables produced by the NJOY program, the conventional subgroup method usually ignores both the resonance elastic scattering and the resonance interference effects. In this paper, on one hand, to correct the resonance elastic scattering effect, RI tables are regenerated by using the Monte Carlo code, OpenMC, which employs the Doppler broadening rejection correction method for the resonance elastic scattering. On the other hand, a fast resonance interference factor method is proposed to efficiently handle the resonance interference effect. Encouraging conclusions have been indicated by the numerical results. (1) For a hot full power pressurized water reactor fuel pin-cell, an error of about +200 percent mille could be introduced by neglecting the resonance elastic scattering effect. By contrast, the approach employed in this paper can eliminate the error. (2) The fast resonance interference factor method possesses higher precision and higher efficiency than the conventional Bondarenko iteration method. Correspondingly, if the fast resonance interference factor method proposed in this paper is employed, the $k_{inf}$ can be improved by ~100 percent mille with a speedup of about 4.56.

A new method for extracting resonance information in acoustic wave resonance scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.504-509
    • /
    • 1998
  • A new method is proposed for the isolation of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitude of the resonance from each scattered partial wave, however, the phases are significantly different. The exact .pi.-radians phase shifts through the resonance and anti-resonance show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the difference in the phase of each, partial wave, the new method and RST generate different total resonance spectra.

  • PDF

Analysis of Resonance Efficiency According to Length and Entrance Depth of Channel Resonance Part of Multi-Resonance Wave Energy Converter (다중공진 파력발전체의 수로 공진부 길이와 입구 깊이별 공진 효율 분석)

  • Sukjin Ahn;Changhoon Lee;Hyen-cheol Jung;Hyukjin Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.138-148
    • /
    • 2024
  • Multi-resonance wave energy converter can generate efficient power generation by complexly utilizing the resonance phenomenon of waves even when waves propagate normally. As the wave is amplified by resonance, the power generation efficiency of the multi-resonance wave energy converter increases, and the shape of the resonance part needs to be optimized to maximize power generation efficiency. The multi-resonance wave energy converter amplifies waves in the seiche resonance part and the channel resonance part. In this study, CFD numerical experiments were performed under various conditions such as the length and location of the channel resonance part to analyze the sensitivity for each condition and derve the optimal shape of the channel resonance part.

Monte Carlo Resonance Treatment for the Deterministic Transport Lattice Codes

  • Kim Kang-Seog;Lee Chung Chan;Chang Moon Hee;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.581-595
    • /
    • 2003
  • Transport lattice codes require the resonance integral tables for the resonant nuclides where the resonance integral is a function of the background cross section and can be prepared through a special program solving the slowing down equation. In case the cross section libraries do not include the resonance integral table for the resonant nuclides, the computational prediction produces a large error. We devised a new method using a Monte Carlo calculation for the effective resonance cross sections to solve this problem provisionally. We extended this method to obtain the resonance integral table for general purpose. The MCNP code is used for the effective resonance integrals and the LIBERTE code for the effective background cross sections. We modified the HELIOS library with the effective cross sections and the resonance integral tables obtained by the newly developed Monte Carlo method, and performed sample calculations using HELIOS and LIBERTE. The results showed that this method is very effective for the resonance treatment.