• Title/Summary/Keyword: resole

Search Result 20, Processing Time 0.024 seconds

Degradation of Phenolic Resin, Resole by Microbial Consortia (미생물 컨소시엄에 의한 페놀수지 Resole의 분해)

  • 오계헌;최원식
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.220-222
    • /
    • 1998
  • Three microbial consortia were screened for their ability to degrade phenolic resin, resole as a sole carbon source. These microbial consortia were derived from soil samples collected from a phenolic resin manufacturing plant site. Among the consortia, the test consortium, designated as MS2, displayed approximately 70% degradation of the substrate, 100 mg of resole per liter, within the fist twelve days of incubation but the degradation was inhibited. During the incubation period, pH was decreased from 7.0 to 2.7, and the resole degradation became inhibited under the conditions. UV-scans of spent culture showed that the wavelength of maximum absorption was 261 nm for resole.

  • PDF

Characterization of NR Vulcanizates Cured by Both Sulfur and Resole (황과 레졸로 가교된 천연고무 가교물의 특성)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2000
  • Physical properties of NR vulcanizates cured by both sulfur and resole were studied. Cure characteristics of the compounds were also investigated. Two types of resoles with different molecular weight distributions were employed. The scorch time of the NR compound containing the resole with a low molecular weight distribution was shorter than that of the compound containing the resole with a high one. Crosslink densities of the NR vulcanizates with a high resole content after the thermal aging at $95^{\circ}C$ decreased, while that of the vulcanizate without resole after the thermal aging at $95^{\circ}C$ increased. Though crosslink densities of the NR vulcanizates with a high resole content decreased with increasing the aging time, the moduli increased while the tensile strength and tear strength decreased.

  • PDF

Thermal Aging Behaviors of Resole-Cured Rubber Composites (레졸로 가교된 고무 복합체의 열노화 거동)

  • Choi, Sung-Seen;Ha, Sung-Ho;Woo, Chang-Su
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.284-289
    • /
    • 2005
  • Changes of crosslink densities of resole-cured NR composites by thermal aging were studied. The thermal aging was performed at $50-90^{\circ}C$. The crosslink density change increased with increase of the aging temperature and then decreased. Level of the crosslink density change decreased with increase of the resole content. Increase of the crosslink density by the thermal aging was explained with the formations of new crosslinks by combination reactions of pendent groups terminated by resoles and crosslinking reactions by pendent groups having methylol or o-methylene quinone intermediate. And decrease of the crosslink density by the thermal aging was explained with the dissociations of the existing crosslinks having dimethylene ether linkages.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

Organic Reaction Utilizing Cycilic Carbonate I. Polymerization of monochloroethylenecarbonate with phenols

  • Moon, Do-Won
    • Archives of Pharmacal Research
    • /
    • v.8 no.4
    • /
    • pp.191-195
    • /
    • 1985
  • The polymerization of title compound (MCEC, I) with phenols led to give corresponding resole type polymer. Phenol and p-methoxyphenol polymer had a relative higher molecular weight and a property of elastomer, but p-chloro-and p-nitrophenol polymer had a lower ones. Also, phenol and p-meth-oxyphenol gave to crosslinking polymer by elongation of reaction period and rising of temperature.

  • PDF

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Thermal Aging Properties of NR Vulcanizates with Different Cure Systems (가교 시스템이 다른 NR 가황물의 열노화 특성)

  • Choi, Sung-Seen;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Changes of physical properties or NR vulcanizates with different cure systems by thermal aging were investigated. Two sulfur cure systems and one resole cure system were employed, and total contents of the curatives were varied. For the NR vulcanizates with sulfur cure systems, hardness and modulus after the thermal aging at $90^{\circ}C$ for 3 days were increased, but elongation at break and tensile strength were decreased. For the NR vulcanizates with resloe cure system, the physical properties after the thermal aging were decreased. The change of physical properties by the thermal aging was explained with the crosslink density change. The crosslink densities or the NR vulcanizates with sulfur cure systems were increased after the thermal aging, but those with resole cure system were decreased. Influence of the migration of antidegradant on the changes of physical properties was also investigated. However, the changes of physical properties by the thermal aging were not explained sufficiently with the migration of antigradant.

Development of STI/AOT Optimization Methodology and an Application to the AFWPs with Adverse Effects

  • You, Young-Woo;Yang, Hui-Chang;Chung, Chang-Hyun;Moosung Jae
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.211-217
    • /
    • 1997
  • Adverse effects caused by the surveillance test for the components of nuclear power plant involve plant transients, unnecessary wear, burden on licensee's time, and the radiation exposure to personnel along with the characteristics of each component. The optimization methodology of STI and AOT has been developed and applied to AFWPs of a reference plant. The approach proposed in this paper consist of the resole in minimal mean unavailability of the two-out-of-four system with adverse effects are analytically calculated for the example system. The surveillance testing strategy are given by the sequential test, the staggered test and the train staggered test which is a mined test scheme. In the system level, the sensitivity analyses for the STI and AOT, are performed for the measure of the system unavailability of the top event in the fault tree developed for the example system. This methodology may contribute to establishing the basis for the risk-based regulations.

  • PDF

Influence of Activation Temperature on Surface and Adsorption Properties of PAN-based Activated Carbon Fibers/Phenolic Resin Matrix Composites (활성화 온도에 의한 PAN계 활성탄소섬유/페놀수지 복합재료의 표면 및 흡착특성)

  • 박수진;김기동;이재락
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.97-104
    • /
    • 2000
  • PAN-based activated carbon fibers/phenolic resin matrix composites (ACFCs) were manufactured via molding process with oxidized carbon fabrics (plain-type) and phenolic resin (resole-type) compounded by 70 : 30 wt%. The green body (as molded) was submitted to carbonization (at 100$0^{\circ}C$) in an inert environment and activation (at 700, 800, 900 and 100$0^{\circ}C$) in a $CO_2$ environment. In this work, the influence of activation temperatures was investigated in surface properties, such as pH, acid- and base-values by titration method, and in adsorption properties, i.e., specific surface area and pore structures by BET-method of the composites. Also, the pressure drops of the specimens were calibrated by ASTM. As a result, the activation temperature influenced the surface property of ACFCs. When the activation temperature was higher than 90$0^{\circ}C$, the surface was gradually developed in basic nature. And, the evolutions of specific surface area, total pore volume and pore size distribution of ACFCs could be easily confirmed the dependence on the activation temperature. Among them, well-developed pore structure from adsorption characteristics was changed of the ACFCs activated at 90$0^{\circ}C$. Also, the pressure drop was slightly decreased with increasing the temperature due to increasing the burn-off with heat treatment temperature of ACFCs.

  • PDF