• Title/Summary/Keyword: resistive switching

Search Result 133, Processing Time 0.027 seconds

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim;Jinho Lee;Ryun Na Kim;Donghee Lee;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

A Light Incident Angle Stimulated Memristor Based on Electrochemical Process on the Surface of Metal Oxide

  • Park, Jin-Ju;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.174-174
    • /
    • 2014
  • Memristor devices are one of the most promising candidate approaches to next-generation memory technologies. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. Among these possible choices of signal controlling factors of memristor, photon is particularly attractive because photonic signals are not only easier to reach directly over long distances than electrical signal, but they also efficiently manage the interactions between logic devices without any signal interference. Furthermore, due to the inherent wave characteristics of photons, the facile manipulation of the light ray enables incident light angle controlled memristive switching. So that, in the tautological sense, device orienting position with regard to a photon source determines the occurrence of memristive switching as well. To demonstrate this position controlled memory device functionality, we have fabricated a metal-semiconductor-metal memristive switching nanodevice using ZnO nanorods. Superhydrophobicity employed in this memristor gives rise to illumination direction selectivity as an extra controlling parameter which is important feature in emerging. When light irradiates from a point source in water to the surface treated device, refraction of light ray takes place at the water/air interface because of the optical density differences in two media (water/air). When incident light travels through a higher refractive index medium (water; n=1.33) to lower one (air; n=1), a total reflection occurs for incidence angles over the critical value. Thus, when we watch the submerged NW arrays at the view angles over the critical angle, a mirror-like surface is observed due to the presence of air pocket layer. From this processes, the reversible switching characteristics were verified by modulating the light incident angle between the resistor and memristor.

  • PDF

Fabrication of resistive switching memory by using MoS2 layers grown by chemical vapor deposition

  • Park, Sung Jae;Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.298.1-298.1
    • /
    • 2016
  • Two-dimensional materials have been received significant interest after the discovery of graphene due to their fascinating electronic and optical properties for the application of novel devices. However, graphene lack of certain bandgap which is essential requirement to achieve high performance field-effect transistors. Analogous to graphene materials, molybdenum disulfide ($MoS_2$) as one of transition-metal dichalcogenides family presents considerable bandgap and exhibits promising physical, chemical, optical and mechanical properties. Here we studied nonvolatile memory based on $MoS_2$ which is grown by chemical vapor deposition (CVD) method. $MoS_2$ growth was taken on $1.5{\times}1.5cm^2$ $SiO_2$/Si-substrate. The samples were analyzed by Raman spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Current-voltage (I-V) characteristic was carried out HP4156A. The CVD-$MoS_2$ was analyzed as few layers and 2H-$MoS_2$ structure. From I-V measurement for two metal contacts on CVD-$MoS_2$ sample, we found typical resistive switching memory effect. The device structures and the origin of nonvolatile memory effect will be discussed.

  • PDF

Electrical Characteristics of Resistive-Switching-Memory Based on Indium-Zinc-Oxide Thin-Film by Solution Processing (용액 공정을 이용한 Indium-Zinc-Oxide 박막 기반 저항 스위칭 메모리의 전기적 특성)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.484-490
    • /
    • 2017
  • We investigated the rewritable operation of a non-volatile memory device composed of Al (top)/$TiO_2$/indium-zinc-oxide (IZO)/Al (bottom). The oxygen-deficient IZO layer of the device was spin-coated with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions, and the $TiO_2$ layer was fabricated by atomic layer deposition. The oxygen vacancies IZO layer of an active component annealed at $400^{\circ}C$ using thermal annealing and it was proven to be in oxygen vacancies and oxygen binding environments with OH species and heavy metal ions investigated by X-ray photoelectron spectroscopy. The device, which operates at low voltages (less than 3.5 V), exhibits non-volatile memory behavior consistent with resistive-switching properties and an ON/OFF ratio of approximately $3.6{\times}10^3$ at 2.5 V.

Evolution of Nonvolatile Resistive Switching Memory Technologies: The Related Influence on Hetrogeneous Nanoarchitectures

  • Eshraghian, Kamran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.243-248
    • /
    • 2010
  • The emergence of different and disparate materials together with the convergence of both the 'old' and 'emerging' technologies is paving the way for integration of heterogeneous technologies that are likely to extend the limitations of silicon technology beyond the roadmap envisaged for complementary metal-oxide semiconductor. Formulation of new information processing concepts based on novel aspects of nano-scale based materials is the catalyst for new nanoarchitectures driven by a different perspective in realization of novel logic devices. The memory technology has been the pace setter for silicon scaling and thus far has pave the way for new architectures. This paper provides an overview of the inevitability of heterogeneous integration of technologies that are in their infancy through initiatives of material physicists, computational chemists, and bioengineers and explores the options in the spectrum of novel non-volatile memory technologies considered as forerunner of new logic devices.

ZnO 박막을 이용한 다기능성 저항 변화 소자 연구

  • Lee, Seung-Hyeop;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.379-379
    • /
    • 2011
  • 차세대 저항메모리(resistive switching random access memory; ReRAM)의 개발을 위해 다양한 산화 물질들의 저항 변화 특성이 연구되고 있다. 본 연구에서는 저항 변화 물질로 잘 알려진 ZnO 박막을 이용하여 저항 변화 특성을 평가하였다. ZnO 박막은 Pt/Ti/$SiO_2$/Si 기판 위에 스퍼터링 시스템을 이용하여 약 50 nm 두께로 증착되었다. 증착된 박막 위에 전극을 evaporator를 이용하여 패턴닝함으로써 전극-반도체-전극 구조의 소자를 만들고 이의 전기적 특성을 평가하였다. Compliance current를 설정하여 저항 변화 특성을 측정한 결과 가해진 전압의 극성에 관계 없이 저항이 변화하는, dielectric breakdown에 의해 박막내 전도성 필라멘트라 불리는 전도성 길이 생성되었다가 joule-heating에 의해 필라멘트가 파열되는, 전형적인 unipolar 저항 변화특성이 나타났다. 다기능성 소자 개발을 위해 위 소자 구조를 투명한 고분자 기판위에 형성하고 표면에 초발수성 ZnO 나노막대 구조를 합성하였다. 그 결과 투명하면서 유연하고, 수분에도 안정적인 다기능성 저항 변화 소자 특성을 평가할 수 있었다. 본 결과를 바탕으로 필라멘트 이론에 기초한 저항 변화 메커니즘을 설명하는 모델이 제시되었다.

  • PDF

Characterization of Resistive Switching in PVP GQD / HfOx Memristive Devices (PVP GQD / HfOx 구조를 갖는 전도성 필라멘트 기반의 저항성 스위칭 소자 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.113-117
    • /
    • 2021
  • A composite active layer was designed based on graphene quantum dots, which is a low-dimensional structure, and a heterogeneous active layer of graphene quantum dots was applied to the interfacial defect structure to overcome the limitations. Increasing to 1.5~3.5 wt % PVP GQD, Vf changed from 2.16 ~ 2.72 V. When negative deflection is applied to the lower electrode, electrons travel through the HfOx/ITO interface. The Al + ions are reduced and the device dominates at low resistance. In addition, as the PVP GQD concentration increased, the depth of the interfacial defect decreased, and the repetition of appropriate electrical properties was confirmed through Al and HfOx/ITO. The low interfacial defects help electrophoresis of Al+ ions to the PVP GQD layer and the HfOx thin film. A local electric field increase occurred, resulting in the breakage of the conductive filament in the defect.