• Title/Summary/Keyword: resistive

Search Result 1,187, Processing Time 0.033 seconds

Development and properties of jointed Bi-2223 superconductor tape

  • Kim, Jung-Ho;Ji, Bong-Ki;Park, Hyung-Sang;Kim, Ho-Jin;Oh, Seung-Jin;Kim, Joong-Seok;Joo, Jin-Ho;Nah, Won-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.298-303
    • /
    • 2000
  • We evaluated the electric properties of Bi-2223 jointed tapes processed by both resistive- and supercondcuting-joint methods. For the resistive-joint, filler materials of wood metal, Pb/Sn, In, and silver paste were used, whereas, for the superconductive-joint, the lap joint method were used. In the resistive-joint tape, it was observed that the electrical properties such as current transport property, n-value, and contact resistance of the tape were significantly related to the resistivity of filler materials. On the other hand, in the superconducting-joint tape, the current transport property was dependent on the uniaxial pressure. Specifically, the current transport property varied 50 to 80% with uniaxial pressure, probably due to the irregular microstructure in the transition region.

  • PDF

Solution of the TE Scattering by a Resistive Strip Grating Over Grounded Dielectric Plane with Edge Boundary Condition (모서리 경계조건을 만족하는 접지된 유전체평면위의 저항띠 격자구조에 의한 TE 산란의 해)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.196-202
    • /
    • 2007
  • In this paper, The TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric plane with edge boundary condition are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. For a TE scattering problem, the induced surface current density is expected to the zero value at both edges of the resistive strip, then the induced surface current density on the resistive strip is expanded in a series of the multiplication of Gegenbauer(Ultraspherical) polynomials with the first order and functions of appropriate edge boundary condition. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 100 ohms/square and R = 0 as a conductive strip case show in good agreement with those in the existing papers.

  • PDF

Implement of Broadband Resistive Mixer for X-band FMCW Radar (X밴드 FMCW 레이더용 광대역 저항성 주파수 혼합기 구현)

  • Park, Dong-Kook;Han, Tae-Kyoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.970-974
    • /
    • 2007
  • A mixer is a key component in the wireless communication systems. In this paper, we design a mixer which is used in a frequency modulated continuous wave(FMCW) radar system. The frequency sweep range of the radar is from 10 GHz to 11 GHz. The transmitted and received signals of the FMCW radar are applied to LO and RF ports of the mixer, respectively, but the frequency difference between the two signals, which is called "a beat frequency" is under a few KHz and depending on the distance to target. Thus the isolation between the LO and RF ports is very important factor to design this mixer. In this paper we propose a single balanced resistive mixer using GaAs MESFET for this application. We first design a single-ended type resistive mixer using a simulation tool, then design a balanced type to increase the LO-to-RF isolation of the mixer. We fabricated the mixer on the substrate of dielectric constant 10 and thickness 0.635 mm. The measured results show that the isolation and conversion loss of the mixer over the frequency band is 20dB and 10.5dB, respectively. The LO input power for operating the proposed mixer is +3dBm, which is lower than a general conventional mixer's LO power. The 1 dB compression point is 6dBm.

Study on the Influence of Distribution Lines to Parallel Inverter Systems Adopting the Droop Control Method

  • Zhang, Xuan;Liu, Jinjun;You, Zhiyuan;Liu, Ting
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.701-711
    • /
    • 2013
  • This paper takes into account the influence of the different impedances of distribution lines on power distribution among inverters when the inverters are paralleled with the droop control method. The impact of distribution lines on the power distribution of inverters can be divided into two aspects. Firstly, since the distributed generators are in low voltage grids, there is resistive impedance in the distribution lines, which will cause control coupling and reduce system stability. The virtual negative resistive impedance of inverters is adopted in this paper to neutralize the resistive element of distribution lines and thus make the distribution line impedance purely inductive. Secondly, after solving the resistive impedance problem, the difference in the inductive impedance value of distribution lines due to the low density of distributed generators will cause an unequal share of reactive power. With regards to this problem, modification is put forward for the droop control strategy to share the reactive power equally. The feasibility of the design is validated by simulation and experimental results.

Graphene Oxide Thin Films for Nonvolatile Memory Applications

  • Kim, Jong-Yun;Jeong, Hu-Young;Choi, Hong-Kyw;Yoon, Tae-Hyun;Choi, Sung-Yool
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.9-9
    • /
    • 2011
  • There has been strong demand for novel nonvolatile memory technology for low-cost, large-area, and low-power flexible electronics applications. Resistive memories based on metal oxide thin films have been extensively studied for application as next-generation nonvolatile memory devices. However, although the metal oxide-based resistive memories have several advantages, such as good scalability, low-power consumption, and fast switching speed, their application to large-area flexible substrates has been limited due to their material characteristics and necessity of a high-temperature fabrication process. As a promising nonvolatile memory technology for large-area flexible applications, we present a graphene oxide-based memory that can be easily fabricated using a room temperature spin-casting method on flexible substrates and has reliable memory performance in terms of retention and endurance. The microscopic origin of the bipolar resistive switching behaviour was elucidated and is attributed to rupture and formation of conducting filaments at the top amorphous interface layer formed between the graphene oxide film and the top Al metal electrode, via high-resolution transmission electron microscopy and in situ x-ray photoemission spectroscopy. This work provides an important step for developing understanding of the fundamental physics of bipolar resistive switching in graphene oxide films, for the application to future flexible electronics.

  • PDF

The Experimental Study on the Suggestion for Bond Strength Standard of Sprayed Fire Resistive Materials Used at the Substation Steel Structures (변전소 철골 내화뿜칠 부착강도 기준설정에 관한 실험적 연구)

  • Park, Dong-Su;Joung, Won-Seoup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.128-137
    • /
    • 2014
  • Sprayed fire resistive materials are mainly used at steel structures to satisfy fireproof construction standard. However, the regulations on bond strength have been not considered with the exception of structures in the nuclear power plants, although it is an important factor showing material properties. Therefore, this paper suggested guidelines for bond strength of sprayed fire resistive materials used in the substation, by measuring bond strength according to aging of structures and impact loading considering environment of substations. It is judged that the bond strength suggested in this paper is the minimum value because it was measured from specimens widely used.

Bridge Resistance Deviation-to-Period Converter for Resistive Biosensors (저항형 바이오 센서를 위한 브릿지 저항 편차-주기 변환기)

  • Chung, Won-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • A bridge resistance deviation-to-period (BRD-to-P) converter is presented for interfacing resistive biosensors. It consists of a linear operational transconductance amplifier (OTA) and a current-controlled oscillator (CCO) formed by a current-tunable Schmitt trigger and an integrator. The free running period of the converter is 1.824 ms when the bridge offset resistance is $1k{\Omega}$. The conversion sensitivity of the converter amounts to $3.814ms/{\Omega}$ over the resistance deviation range of $0-1.2{\Omega}$. The linearity error of the conversion characteristic is less than ${\pm}0.004%$.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

Improved Uniformity of Resistive Switching Characteristics in Ge0.5Se0.5-based ReRAM Device Using the Ag Nanocrystal (Ag Nanocrystal이 적용된 Ge0.5Se0.5-based ReRAM 소자의 Uniformity 특성 향상에 대한 연구)

  • Chung, Hong-Bay;Kim, Jang-Han;Nam, Ki-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.491-496
    • /
    • 2014
  • The resistive switching characteristics of resistive random access memory (ReRAM) based on amorphous $Ge_{0.5}Se_{0.5}$ thin films have been demonstrated by using Ti/Ag nanocrystals/$Ge_{0.5}Se_{0.5}$/Pt structure. Ag nanocrystals (Ag NCs) were spread on the amorphous $Ge_{0.5}Se_{0.5}$ thin film and they played the role of metal ions source. As a result, comparing the conventional Ag/$Ge_{0.5}Se_{0.5}$/Pt structure, this Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt ReRAM device exhibits the highly uniform bipolar resistive switching (BRS) characteristics, such as the operating voltages, and the resistance values. At the same time, a stable DC endurance(> 100 cycles), and the excellent data retention (> $10^4$ sec) properties were found from the Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt structured ReRAM device.

Impedance Characterization of Tantalum Oxide Deposited through Pulsed-Laser Deposition

  • Kwon, Kyeong-Woo;Jung, Jin-Kwan;Park, Chan-Rok;Kim, Jin-Sang;Baek, Seung-Hyub;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.207.1-207.1
    • /
    • 2013
  • Tantalum oxide has been extensively investigated as one of the promising Resistive switching materials applicable to Resistive Dynamic Access Memories. Impedance spectroscopy offers simultaneous measurements of electrical and dielectric information, separation of electrical origins among bulk, grain boundaries, and interfaces, and the monitoring of electrical components. Such benefits have been combined with the resistive states of resistive switching devices which can be described in terms of equivalent circuits involving resistors, capacitors, and inductors, The current work employed pulsed laser deposition in order to prepare the oxygen-deficient tantalum oxide. The fabricated devices were controlled between highresistance and low-resistance states in controlled current compliance modes. The corresponding electrical phenomena were monitored both in the dc-based current-voltage characteristics and in the ac-based impedance spectroscopy. The origins of the electrical switching are discussed towards optimized ReRAM devices in terms of interfacial effects.

  • PDF