• Title/Summary/Keyword: resistance sintering

Search Result 421, Processing Time 0.028 seconds

Enhancement of Electrical Conductivity for Ag Grid using Electrical Sintering Method (정전류 전기 소결법을 이용한 Ag 전극 배선의 전도성 향상)

  • Hwang, Jun Y.;Moon, Y.J.;Lee, S.H.;Kang, K.;Kang, H.;Cho, Y.J.;Moon, S.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperature increase with changing applied current and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.

  • PDF

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

Fabrication of W-Cu Composite by Resistance Sintering under Ultrahigh Pressure

  • Kwon, Y.S.;Kim, J.S.;Zhou, Z.J.
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.181-185
    • /
    • 2003
  • Resistance sintering under ultra-high pressure if developed to fabricate W-Cu composite containing 5 to 80v/o copper. The consolidation was carried out under pressure of 6 to 8 GPa and input power of 18 to 23 kW for 50 seconds. The densification effect and microstructure of these W-Cu composites are investigated. The effect of W particle size on ,sintering density was also studied. The micro hardness was measured to evaluate the sintering effect.

Evaluation of Seawater Resistance of a Non-Sintering Inorganic Binder Using Phosphogypsum and Waste Lime as Activators

  • Kim, Ji-Hoon;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.185-193
    • /
    • 2018
  • In this study, using Granulated Blast Furnace Slag (GBFS), an industrial byproduct, and Phosphogypsum (PG), and Waste Lime (WL) as activator, non-sintering binder (NSB) which does not require a sintering process was produced, and the chemical penetration resistance was evaluated through a seawater resistance experiment. The result of the experiment showed that the inside of NSB mortar saw almost no influence from the ions in seawater due to its dense structure. Also, as it appears that only the surface reacts with ions in seawater while spreading inward is suppressed, the high seawater resistance of NSB could be confirmed.

Influence of the Internal Current on the Sintering Behavior of ZnO Ceramics Sintered by PCS Method

  • Misawa, Tatsuya;Shikatani, Noboru;Kawakami, Yuji;Enjoji, Takashi;Ohtsu, Yasunori;Fujita, Hiroharu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.538-539
    • /
    • 2006
  • The influence of the internal current for the ZnO ceramics on the sintering behavior by pulse current sintering (PCS) method was investigated. To clear the dependence of inner current on the sintering behavior of ZnO ceramics, direct measurement of electric resistance of ZnO specimen under sintering by SPS device was carried out. It was observed that electric resistance of specimen decreases with increase in the temperature. The electric resistance begins to decrease from the low temperature of $200^{\circ}C$. The internal structure of sintered ZnO ceramics changed by the control of the internal current in the specimen using $Al_2O_3$ plate.

  • PDF

Effect of Screen Printing and Sintering Conditions on Properties of Thick Film Resistor on AlN Substrate (인쇄 및 소결조건이 AlN 기판용 후막저항체의 특성에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.344-349
    • /
    • 2014
  • $RuO_2$-based high frequency thick-film resistor paste was printed at the speed of 10, 100, 300 mm/sec on the AlN substrate, and then sintered at between 750 and $900^{\circ}C$. The sintered thick films were characterized in terms of printing and sintering conditions. With increasing printing speed, the thickness and roughness of sintered film increased. The resistance of the thick film resistor was reduced by increasing the printing speed from 10 to 100 mm/sec, but did not significantly change at 300 mm/sec speed. With increasing sintering temperature, the surface roughness and thickness of sintered resistor film decreased. The reduction rate was large in case of fast printed resistor. The resistance of the resistor increased up to $800^{\circ}C$ with sintering temperature, but again decreased at the higher sintering temperature.

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF

Fabrication of ZrB2/SiC/WC composites via spark plasma sintering and enhancement of oxidation resistance

  • Jae-Seok Choi;Jung-Hun Kim;Jae Uk Hur;Sung-Churl Choi;Gye-Seok An
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.3
    • /
    • pp.351-357
    • /
    • 2020
  • To prevent the oxidation of ultra-high-temperature ceramic zirconium diboride (ZrB2) at high temperatures, this study fabricated sintered composites containing silicon carbide and tungsten carbide, and examined the properties related to hightemperature oxidation. Spark plasma sintering was employed for rapid sintering, and a high-temperature torch test was conducted on samples to determine their surface oxidation behaviour. The composites oxidised at high temperature showed different surface oxidation behaviour according to the type of carbide-based additive. Composites containing both carbides, which have different oxidation mechanisms, exhibited better resistance to oxidation than those containing a single carbide.

Study on the characteristics of transpatent electronic Ag (20%) ink by sintering conditions (투명전자잉크 Ag(20%)의 소성조건에 따른 특성 연구)

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.78-79
    • /
    • 2009
  • We have investigated low temperature sintering characteristics of organic Ag complex. Organic Ag complex was coated on the glass substrate by spin coating method. The coated Ag complex was sintered in an air atmosphere. The sintering temperature was varied from 30 to $80^{\circ}C$ and sintering time was varied from 1 to 228 hour. The sheet resistance was abruptly changed at $80^{\circ}C$-6h, $65^{\circ}C$-24h, $30^{\circ}C$-228 hour and the thickness of the coated film was significantly decreased. The sheet resistance of Ag films were about $0.53\;{\Omega}/{\square}$ at the $80^{\circ}C$ - 12hour.

  • PDF