• Title/Summary/Keyword: resistance management

Search Result 994, Processing Time 0.027 seconds

A SOC Coefficient Factor Calibration Method to improve accuracy Of The Lithium Battery Equivalence Model (리튬 배터리 등가모델의 정확도 개선을 위한 SOC 계수 보정법)

  • Lee, Dae-Gun;Jung, Won-Jae;Jang, Jong-Eun;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.99-107
    • /
    • 2017
  • This paper proposes a battery model coefficient correction method for improving the accuracy of existing lithium battery equivalent models. BMS(battery management system) has been researched and developed to minimize shortening of battery life by keeping SOC(state of charge) and state of charge of lithium battery used in various industrial fields such as EV. However, the cell balancing operation based on the battery cell voltage can not follow the SOC change due to the internal resistance and the capacitor. Various battery equivalent models have been studied for estimation of battery SOC according to the internal resistance of the battery and capacitors. However, it is difficult to apply the same to all the batteries, and it tis difficult to estimate the battery state in the transient state. The existing battery electrical equivalent model study simulates charging and discharging dynamic characteristics of one kind of battery with error rate of 5~10% and it is not suitable to apply to actual battery having different electric characteristics. Therefore, this paper proposes a battery model coefficient correction algorithm that is suitable for real battery operating environments with different models and capacities, and can simulate dynamic characteristics with an error rate of less than 5%. To verify proposed battery model coefficient calibration method, a lithium battery of 3.7V rated voltage, 280 mAh, 1600 mAh capacity used, and a two stage RC tank model was used as an electrical equivalent model of a lithium battery. The battery charge/discharge test and model verification were performed using four C-rate of 0.25C, 0.5C, 0.75C, and 1C. The proposed battery model coefficient correction algorithm was applied to two battery models, The error rate of the discharge characteristics and the transient state characteristics is 2.13% at the maximum.

A Status of Technology and Policy of Nuclear Spent Fuel Treatment in Advanced Nuclear Program Countries and Relevant Research Works in Korea (선진 원자력발전국의 사용후핵연료 처리기술 및 정책현황과 우리나라의 관련연구 현황)

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Kwon, Kie-Chan;Lee, Won-Kyung;Lee, Eun-Pyo;Hong, Dong-Hee;Yoon, Ji-Sup;Park, Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.339-350
    • /
    • 2007
  • Status on the spent nuclear fuel management policy and R&D plan of the major countries is surveyed. Also the prospect of the future R&D plan is suggested. Recently so-called fuel cycle nations, which have the reprocess policy of the spent fuel, announced new spent fuel management policy based on the advanced fuel cycle technology. The policy is focused to transmute highly radioactive material and material having a very long half-life, and to recycle the Pu and U contained in the spent fuel. In this way the radio-foxily of the spent fuel as well as the amount of the high level waste to be eventually disposed can greatly be reduced. Most of countries selected the wet process as a primary option for the treatment of the spent fuel since the advanced wet process, which is based on the existing PUREX process, looks more feasible as compared with the dry process. The wet process, however, is much more sensitive in terms of proliferation-resistance compared with the dry process. The pure Pu can easily be obtained by simply modifying the process. On the other hand the pure Pu can not be extracted in the dry process based on the high temperature molten salt process such as a pyroprocess. Even though the pyroprocess technology is very premature, it has a great merit. Thus it is necessary for Korea to have a long term strategy for pursuing a spent fuel treatment technology with a proliferation resistance and a great merit for the GEN-IV fuel cycles. Pyroprocess is one of the best candidates to satisfy these purposes.

  • PDF

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Present Status of Soilborne Disease Incidence and Scheme for Its Integrated Management in Korea (국내 토양병해 발생현황과 종합 관리방안)

  • Kim, Choong-Hoe;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.146-161
    • /
    • 2002
  • Incidence of soilborne diseases, as a major cause of failure of continuous monocropping becomes severe in recent years. For examples, recent epidemics of club root of chinese cabbage, white rot of garlic, bacterial wilt of potato, pepper phytophthora blight, tomato fusarium wilt and CGMMV of watermelon are the diseases that require urgent control measures. Reasons for the severe incidence of soilborne diseases are the simplified cropping system or continuous monocropping associated with allocation of major production areas of certain crop and year-round cultivation system that results in rapid degradation of soil environment. Neglect of breeding for disease resistance relative to giving much emphasis on high yield and good quality, and cultural methods putting first on the use of chemical fertilizers are thought to be the reason. Counter-measures against soilborne disease epidemics would become most effective when the remedies are seeded for individual causes. As long-term strategies, development of rational cropping system which fits local cropping and economic condition, development and supply of cultivars resistant to multiple diseases, and improvement of soil environment by soil conditioning are suggested. In short-term strategies, simple and economical soil-disinfestation technology, and quick and accurate forecasting methods for soilborne diseases are urgent matter far development. for these, extensive supports are required in governmental level for rearing soilborne disease specialists and activation of collaborating researches to solve encountering problems of soilborne diseases.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

A study on the change of EEOI before and after modifying bulbous at the large container ship adopting low speed operation (대형 컨테이너선의 저속 운항 시 선수부 개조 전후 EEOI 변화에 대한 연구)

  • Park, Goryong;Cho, Kwonhae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The International Maritime Organization(IMO) has adopted and implemented compulsory regulation for reducing greenhouse gas emission that cause global warming. However, with global warming underway, the IMO plans to enforce voluntary carbon dioxide emissions reduction based on the Ship Energy Efficient Management Plan and the Energy Efficiency Operational Indicator(EEOI) in the near future. Large container ships sail at low speeds in order to save fuel and reduce carbon dioxide emissions. However, bulbous bows designed for high-speed ships decrease fuel efficiency by acting as resistance when reduced speeds are adopted by large container ships. In order to adopt low-speed operations and increase fuel savings, the bulbous bow of a large container ship was modified into the proper shape and size. Fuel consumption was compared for checking the result of EEOI before and after modifying the bulbous bow adopted on low speed operation of large high-speed ships. The results confirmed much larger carbon dioxide emissions reduction than expected. If EEOI would be implemented as compulsory regulation for reducing carbon dioxide emissions, bulbous bow modification can be considered as one of the fuel saving methods for the high-speed ships.

Building the Data Mart on Antibiotic Usage for Infection Control (감염관리를 위한 항생제 사용량 데이터마트의 구축)

  • Rheem, Insoo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.348-354
    • /
    • 2016
  • Data stored in hospital information systems has a great potential to improve adequacy assessment and quality management. Moreover, an establishment of a data warehouse has been known to improve quality management and to offer help to clinicians. This study constructed a data mart that can be used to analyze antibiotic usage as a part of systematic and effective data analysis of infection control information. Metadata was designed by using the XML DTD method after selecting components and evaluation measures for infection control. OLAP-a multidimensional analysis tool-for antibiotic usage analysis was developed by building a data mart through modeling. Experimental data were obtained from data on antibiotic usage at a university hospital in Cheonan area for one month in July of 1997. The major components of infection control metadata were antibiotic resistance information, antibiotic usage information, infection information, laboratory test information, patient information, and infection related costs. Among them, a data mart was constructed by designing a database to apply antibiotic usage information to a star schema. In addition, OLAP was demonstrated by calculating the statistics of antibiotic usage for one month. This study reports the development of a data mart on antibiotic usage for infection control through the implementation of XML and OLAP techniques. Building a conceptual, structured data mart would allow for a rapid delivery and diverse analysis of infection control information.

A Study on the Life Management and Improvement of Vulnerable Parts of Aircraft Structures (항공기 구조 수명관리 및 취약부위 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.638-644
    • /
    • 2020
  • This study examines cracks that occur under the load of an aircraft. The life of aircraft vulnerability structures was analyzed and structural fitting improvements were made. Structural integrity and safety have been achieved through preemptive life expectancy and life management of aircraft structures. The crack size inspection capability of the aircraft under analysis is 0.03inch, compared with 0.032inch, which is the lowest of the three vulnerable parts. In addition, the fatigue life analysis results in approximately 1450 operating hours, the lowest of the three vulnerable parts relative to the aircraft's required life of more than 15000 operating hours, which increased the repeat count of the aircraft's initial and re-inspection times, and hence raised the resulting costs and manpower consumption. Finally, the features were improved through structural fitting of the identified three weak parts. The lowest critical crack size was secured at 0.13 through increased structural resistance to generated cracks and increased aircraft safety. The lowest structural fatigue life for cracks occurring during aircraft operation is 25000 operating hours, which are analyzed above the required structural life, resulting in more optimized improvements than the repair costs and excessive fitting range caused by cracks and fractures.

Analysis of Research Trend on Zoysiagrass (Zoysia spp.) (한국 잔디류의 연구동향 분석)

  • Hyun, Yun-Hea;Choi, Byeong-Jin;Kim, Yoon-Joong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Korean lawn grass, which belongs to Zoysia genus in Gramineae family, is one of the major turfgrass which is widely adapted to its native niches in the temperate region of the north east Asia through tropical regions including Philippine, Thailand and Australia. The Turfgrass Information Center' database provides 5,340 descriptive records including 638 referred papers and 1,370 technical reports concerning 'Zoysia'. The database focused on researches on golf courses and lawn care industries. The researches provide informations on seed technology and use of plant protectant for pest management in turf management industries. The purpose of this study is to analyze and classify the research contents of zoysiagrasses which have been published in Korean journals. The total number of research papers published in Korean journals were 274 including 102, 38, and 134 in the 'Botanical', 'Environmental' and 'Cultural' researches, respectively. Publication in foreign journals by Korean investigators were not counted in this research. Research fields concerning golf course maintenance and plant protectant are believed to be necessary when compared to international trends. Moreover, advanced research efforts for the development of new cultivars with various environmental and disease resistance should be accomplished.

Mounting Time Reduction and Clean Policy using Content-Based Block Management for NAND Flash File System (NAND 플래시 파일 시스템을 위한 내용기반 블록관리기법을 이용한 마운트 시간 감소와 지움 정책)

  • Cho, Wan-Hee;Lee, Dong-Hwan;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.41-50
    • /
    • 2009
  • The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. Many researchers are studying the YAFFS, NAND flash file system, which is widely used in the embedded device. However, the existing YAFFS has two problems. First, it takes long time to mount the YAFFS file system because it scans whole spare areas in all pages. Second, the cleaning policy of the YAFFS does not consider the wear-leveling so that it cannot guarantee the duration of data completely. In order to solve these problems, this paper proposes a new content-based YAFFS that consists of a mounting time reduction technique and a content-cleaning policy by using content-based block management. The proposed method only scans partial spare areas of some special pages and provides the block swapping which enables the wear-leveling of data blocks. We performed experiments to compare the performance of the proposed method with those of the JFFS2 system and YAFFS system. Experimental results show that the proposed method reduces the average mounting time by 82.2% comparing with JFFS2 and 42.9% comparing with YAFFS. Besides, it increases the life time of the flash memory by 35% comparing with the existing YAFFS whereas no overheat is added.