• Title/Summary/Keyword: resistance curve

Search Result 778, Processing Time 0.031 seconds

Clinical Significance of Airway Resistance Curve by the Body Plethysmograph (Body Plethysmograph를 이용한 Airway Resistance Curve의 임상적 의의)

  • Cheon, Seon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.218-225
    • /
    • 1995
  • Background: Airway resistance(Raw) is measured with the body plethysmograph by displaying the relationship between airflow and alveolar pressure($V/P_A$). If the resistance curve on $V/P_A$ tracing is curved or looped, the estimation of Raw is difficult. This study was designed to examine wheather there is any correlation between the shape of resistance curve and the clinical status and the pulmonary function of patients. Methods: The 146 pulmonary disease patients with increased Raw were included in this study. The shapes of resistance curves on $V/P_A$ tracing with body plethysmograph during quiet breathing were analyzed and compared with pulmonary function. Results: The results were as follows ; 1) The shapes of resistance curves were summarized in 5 categories; type 1: linear, type 2: ovoid, type 3: sigmoid, type 4: scoop, type 5: paisley. The type 3 except 1 case, type 4 and type 5 were found to have loop mainly in expiratory phase. 2) Although the shapes of resistance curves were not typical for specific disease, the resistance curves of acute disease tended to belong to type 1 or 2 and those of chronic airflow obstruction tended to belong to type 3, 4 or 5. But resistance curves of bronchial asthma and destructive lung with tuberculosis showed all types in proportion to degree of airflow obstruction or destruction of parenchyme. 3) In the cases of resistance curves going to type 5 rather than type 1 and those with looping, airflow obstuction tended to be severe and airway resistance and residual volume tended to increase. Conclusions: Analysis of resistance curve on $V/P_A$ tracing measuring airway resistance is helpful for judging degree of airflow obstruction and air trapping. Although the shape of resistance curve is not typical for specific disease, there is a close association between looping and airway obstruction.

  • PDF

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Estimation of the Fracture Resistance Curve for the Nuclear Piping Using the Standard Compact Tension Specimen (표준 CT시험편을 이용한 실배관 파괴저항 곡선 예측)

  • Park, Hong-Sun;Heo, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil;Cho, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.930-937
    • /
    • 2009
  • The estimation method of the fracture resistance curve for the pipe specimen was proposed using the load ratio method for the standard specimen. For this, the calculation method of the load - CMOD curve for the pipe specimen with the common format equation(CFE) was proposed by using data of the CT specimen. The proposed method agreed well with experimental data. The J-integral value and the crack extension were calculated from the estimated load - CMOD data. The fracture resistance curve was estimated from the calculated J-integral and the crack extension. From these results, it have been seen that the proposed method is reliable to estimate the J-R curve of the pipe specimen.

Evaluation on elastic-plastic fracture resistance curve of SA508C-3 and aluminum alloy steels by load-ratio method (Load-ratio 법에 의한 SA508C-3와 알루미늄 합금의 탄소성 파괴저항 곡선평가)

  • Yoon, H. K.
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 1996
  • A method is proposed to evaluate the elastic-plastic fracture resistance curve only with load displacement records without the crack length measurement in CT specimen. This method is based on the idea that the effect of plastic deformation and the crack growth can be measured only by using a load-displacement record. If we know the reference-load curve representing the hardening of specimen, then the crack extension can be calculated by the elastic compliance determined from the load ratio. The results of this proposed method were compared to those of the elastic-plastic fracture resistance curve for the ASTM standard unloading compliance method. The experimental results for two kinds of ductile materials showed that the proposed method well simulates the material J-R curves. This method is currently applied for CT specimens. but it can be extended to the other specimen geometries.

  • PDF

Characterization of Primary Dynamic Resistance in Resistance Spot Welding (저항 점 용접의 1차 동저항 특성에 관한 연구)

  • 조용준;이세헌;신현일;배경민
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 1999
  • The dynamic resistance monitoring in primary circuit is one of the important issues. Because in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. In this study, new dynamic resistance detecting method is proposed as a practical manner of weld quality assurance using instantaneous current and voltage measured at the primary circuit. and also, various patterns of primary dynamic resistance curve are characterized with the macro photograph and the weldability lobe curve. It is found that the primary dynamic resistance patterns are basically similar to those of the secondary, but there is evident advantage such as no extra devices are needed to obtain the quality information and eventually real time feedback control will be possible.

  • PDF

Load-settlement curve combining base and shaft resistance considering curing of cement paste

  • Seo, Mi Jeong;Park, Jong-Bae;Lee, Dongsoo;Lee, Jong-Sub
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.407-420
    • /
    • 2022
  • Embedded piles, which are typically used in Korea, are precast piles inserted into prebored ground with cement paste. Dynamic pile tests tend to underestimate the bearing capacity of embedded piles because of the undeveloped shaft resistance prior to the curing of the cement paste and the insufficient energy transferred after the curing. In this study, a resistance combination method using the base resistance before the cement paste is cured and the shaft resistance after the cement paste is cured is proposed to obtain a combined load-settlement curve from dynamic pile tests. Two pairs of embedded piles with diameters of 600 and 500 mm are installed. Each pair comprises one pile for the dynamic pile test and another pile for the static load test. The shape of the load-settlement curve obtained using the proposed method is similar to that obtained from the static load test. Thus, the resistances evaluated using the proposed method at selected settlements are similar to those obtained from the static load test. This study shows that the resistance combination method may be used effectively in dynamic pile tests to accurately evaluate the bearing capacity of embedded piles.

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

A Study on the Evaluation of the Pipe Fracture Characteristic (실배관 파괴특성 평가에 관한 연구)

  • Park Jae-Sil;Kim Young-Jin;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.107-114
    • /
    • 2005
  • In order to analyze the elastic-plastic fracture behavior of a structure, the fracture resistance curve of the material should be known first. The standard CT specimen was used to obtain the fracture resistance curves of a piping system. However, it is known that the fracture resistance curve by the standard CT specimen is very conservative to evaluate the integrity of a structure. Also the fracture resistance curve is effected by the specimen geometry and the dimensions because of the constraint effect. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the standard CT specimen and to provide an additional safety margin. For these, the fracture tests using a real pipe specimen and the standard CT specimen test were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method was used to measure the crack extension and the length for the pipe test. Also finite element analyses were performed with a CT specimen and a pipe in order to prove the additional safety margin. From the result of tests and analyses of the pipe and the standard CT specimen, it was observed that the fracture analysis with the standard CT specimen is conservative and the additional safety margin was proved.

Variation of the fracture resistance curve with the change of a size in the specimen of reduced activation ferritic steel (JLF-1) (저방사화 철강재 (JLF-1)의 시험편 크기 변화에 따른 파괴저항곡선의 변화)

  • Kim, D.H.;Yoon, H.K.;Lee, S.P.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1240-1245
    • /
    • 2003
  • Reduced activation ferritic steel (JLF-1) is considered as a promising candidate material for blanket or first-wall structure of D-T fusion reactors. The fracture tests of fracture resistance curve (J-R curve) and $J_{IC}$ are desirable to investigate the exact fracture toughness of JLF-1 steel, since it has a high ductility. The fracture toughness of JLF-1 steel is affected by the configuration of test specimen such side groove, specimen thickness or specimen size. In this study, the fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The test results showed the standard specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen.

  • PDF

Prediction of Failure Behavior for Nuclear Piping Using Curved Wide-Plate Test (흰 광폭평판 시험을 이용한 원자력 배관의 파괴거동예측)

  • Huh, Nam-Su;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin;Lim, Hyuk-Soon;Chung, Dae-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.352-361
    • /
    • 2004
  • One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from the C(T) specimen. It is shown that the J-resistance curve form the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed 3-D FE analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.