• 제목/요약/키워드: resin mixture ratio

검색결과 55건 처리시간 0.028초

Characterization of ATPase Activity of Free and Immobilized Chromatophore Membrane Vesicles of Rhodobacter sphaeroides

  • Kim, Hyeonjun;Tong, Xiaomeng;Choi, Sungyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2173-2179
    • /
    • 2017
  • The intracytoplasmic membrane of Rhodobacter sphaeroides readily vesiculates when cells are lysed. The resulting chromatophore membrane vesicle (CMV) contains the photosynthetic machineries to synthesize ATP by ATPase. The light-dependent ATPase activity of CMV was lowered in the presence of $O_2$, but the activity increased to the level observed under anaerobic condition when the reaction mixture was supplemented with ascorbic acid (${\geq}0.5mM$). Cell lysis in the presence of biotinyl cap phospholipid (bcp) resulted in the incorporation of bcp into the membrane to form biotinylated CMV (bCMV), which binds to streptavidin resin at a ratio of approximately $24{\mu}g$ bacteriochlorophyll a/ml resin. The ATPase activity of CMV was not affected by biotinylation, but approximately 30% of the activity was lost by immobilization to resin. Interestingly, the remaining 70% of ATPase activity stayed constant during 7-day storage at $4^{\circ}C$. On the contrary, the ATPase activity of bCMV without immobilization gradually decreased to approximately 40% of the initial level in the same comparison. Thus, the ATPase activity of CMV is sustainable after immobilization, and the immobilized bCMV can be used repeatedly as an ATP generator.

광조형을 이용한 다색 기능성 시작품의 색상특성에 관한 연구 (A study on color characteristics of Multi-color functional Rapid Prototypes Using laser stereolithography)

  • 조진구;정해도;손재혁;임용관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.824-828
    • /
    • 2000
  • As production cycle has become more and more shorter, the demand of rapid prototyping technology has increased largely. There are many methods for rapid prototyping technology, such as SLA. SLS, FDM. INK JET, LOM and so on. Of all methods, SLA has been most widely used for fabricating precision parts. But products manufactured by this method have limitation of single color and single material. So the principal purpose of this study is to overcome the limit of single color product. If the internal structure of manufactured product is visible with multi-color characteristic, it is possible to check easily the designed model with reality. In order to give multi-color characteristic to the product, photocurable resin mixed with pigment is used in this study. First, transparency of photocurable resin without pigment is evaluated, and then color characteristic and curing characteristic of the mixture is evaluated changing mixing ratio. Through the basic experiments, it becomes possible to fabricate multi-color 3D prototype without assembly.

  • PDF

Improvement of Spatial Resolution in Nano-Stereolithography Using Radical Quencher

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Kim, Ran-Hee;Lee, Kwang-Sup
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.559-564
    • /
    • 2006
  • The improvement of spatial resolution is a fundamental issue in the two-photon, polymerization-based, laser writing. In this study, a voxel tuning method using a radical quencher was proposed to increase the resolution, and the quenching effect according to the amount of radical quencher was experimentally investigated. Employing the proposed method, the lateral resolution of the line patterns was improved almost to 100 nm. However, a shortcoming of the quenching effect was the low mechanical strength of polymerized structures due to their short chain lengths. Nano-indentation tests were conducted to evaluate quantitatively the relationship between mechanical strength and the mixture ratio of the radical quencher into the resins. The elastic modulus was dramatically reduced from an average value of 3.015 to 2.078 GPa when 5 wt% of radical quencher was mixed into the resin. Three-dimensional woodpile structures were fabricated to compare the strength between the resin containing radical quencher and the original resin.

톱밥과 우레탄 수지 혼합물로 제조한 탄성 포장재의 특성 (Characteristics of Elastic Paving Material Made of Sawdust and Urethane Resin Mixture)

  • 최재진;이관호;문승권
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.673-680
    • /
    • 2017
  • 공원 산책로 및 관광지의 포장재로서 목재 칩-우레탄 수지 혼합물의 연구 및 상업화가 진행 중에 있다. 본 연구에서는 활발한 몸동작이 일어나는 놀이터에서 이러한 포장재의 이용을 확대하기 위한 방안을 강구하고자 하였다. 이를 위해, 목재 칩 (10mm 체를 통과하고 3mm 체에 남는 것)의 일부 또는 전부를 톱밥으로 대체한 목질 포장재의 물리적 성질 및 안전성을 실험에 의해 검토하였다. 우레탄 수지, 톱밥 및 목재 칩의 혼합비를 변화시켜 인장 강도, 휨강도, 탄성계수, 미끄럼 저항성, 충격 흡수성, 중금속 함량 및 용출 시험을 실시하였다. 그 결과, 톱밥과 목재 칩의 총 질량에 대한 수지의 질량비가 1.0 및 1.2이고, 톱밥과 목재 칩의 총 질량에 대한 톱밥의 질량비가 0~0.4인 시험체의 경우, KS F 3888-2의 표준을 대체로 만족함으로써 놀이터 등에서의 이용 가능성을 확인하였다. 그러나 목질 재료로 톱밥만을 사용한 경우에는 충격 흡수성이 기준치를 밑돌고, 규정된 인장 강도를 확보하기 위해서 톱밥과 수지의 질량비는 1.2 이상을 필요로 하는 것으로 나타났다.

석조문화재 보존처리에 사용되는 혼합충전제의 특성분석 (Characteristic Analysis on Mixed Filler of Conservation Materials for Stone Cultural Heritage)

  • 송치영;한민수;이장존;전병규;도민환
    • 보존과학회지
    • /
    • 제25권4호
    • /
    • pp.439-450
    • /
    • 2009
  • 접착용 에폭시 수지 L-30과 충전용 에폭시 수지 L-50을 대상으로 활석, 규사, 규회석을 중량비 5, 50, 80, 120, 150% 비율로 혼합하여 첨가제에 따른 에폭시수지의 특성을 고찰하였다. 각 재료의 점도와 색도를 측정하고, 이온크로마토그래피 분석, 주사전자현미경관찰을 실시하였다. 또한 실제 석조문화재 적용 시 안정성을 평가하고자 초음파속도와 압축강도, 접촉각 측정을 실시하였다. 활석을 혼합한 경우 에폭시 몰탈은 낮은 초음파 속도를 보이며, 압축강도는 배합 비율이 높아짐에 따라 감소하는 경향을 보인다. 반면 규회석을 혼합한 에폭시 몰탈의 경우에는 상대적으로 높은 초음파 속도를 보이며, 배합 비율이 높아짐에 따라 강도가 증가하는 경향이 관찰되었다. 이는 석조문화재의 접착 충전제의 물성이 첨가제의 특성, 즉 입도 및 형태에 의해 영향을 받는다고 해석할 수 있다. 따라서 충전제는 수지의 종류는 물론 첨가제의 종류와 특성, 배합비에 따른 특성이 다르므로, 문화재 적용 시에는 이를 고려한 처리제의 선택이 중요하다.

  • PDF

액정-UV경화 이크릴레이트 수지 복합재료의 구조와 물성에 관한 연구 (A Study on Structures and Properties of Liquid Crystal-UV Curable Resin Composite Materials)

  • 김종원
    • 한국인쇄학회지
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2000
  • The characteristics of liquid crystal polymer composite(LCPC) films are possessed of large-area and flexible display, polarizer free, high contrast, wide angle of visual filed and high responsiveness. It is well known that the LCPC films consisting of a continuous LC phase embeded in a three-dimentional network of polymer matrix are formed by photopolymerization-induced phase separation. In this study, we have investigated the point that both liquid crystals and polymer having different properties have to coexiste as composed films. The purpose of this study has been the development of new application with liquid crystals and UV-curable monomers. In the results abtained on the miscibility of nematic liquid crystal and UV-curable resins, difunctional monomer HX-620 turned out to shows the best. From the results abtained on structures, electro-optical properties and dynamic visocoelasticity for LCPC films, the best mixing ratio of monomer to LC mixture were 3/7(photoinitiator; 4wt%) by weight, and this ratio has been provided the most thermal stability for LCPC films. In the results abtained on structure and discoloration properties of LCPC films, it has been demonstrated that consiste of a 8:2 mixture of chiral nematic liquid crystal and HX-620 has the greatest domain and it was the best discoloration.

  • PDF

Experimental investigation of the effect of the addition of Aerosil 200 nanoparticles on the water absorption of polymer concrete

  • A.M. Fattahi;Babak Safaei;Elham Moaddab;Zahra Pezeshki
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.81-92
    • /
    • 2023
  • In this work, the effect of the addition of Aerosil 200, an insulating resin applied in many industries, on the water absorption of cement plast mixture has been experimentally evaluated. First, the preparation stages of cement plast mixture was evaluated based on corresponding standards and then, the effect of the addition of Aerosil 200 nanoparticles (NPs) to cement plast mixtures with sand weight percentage range of 0-0.1% on the variation of water absorption properties was evaluated based on National Standard Institution of Iran 20185 for Concrete Flooring Blocks - Requirements and Test Procedures. Based on the obtained results, it could be found that excessive addition of NPs did not affect the physical properties of the final product. Water absorption percentage was increased in the weight percentage of cement. By the increase of the amount of Aerosil 200 NPs in the prepared cement plast mixture, the percentage of water absorption in weight percentage of sand was decreased. Cement plast with NPs presented significantly lower water absorption than that without NPs.

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

2차 접착된 Sandwich 구조의 굽힘에 관한 실험연구 (An Experimental Study on the Bending Behavior of F.R.P. Sandwich Structure with 2nd Reinforced Bonding)

  • 김익태
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권1호
    • /
    • pp.47-51
    • /
    • 2016
  • 2차 보강 접착을 한 F.R.P. sandwich 보에 대한 굽힘 거동 특성을 실험적으로 연구하였다. 굽힘 실험을 위해 시편의 면재는 chopped mat 300-450, roving clothes 570과 심재는 urethane foam core, resin은 불포화 polyester 713-bp 선박용을 사용하였고 Resin과 Fiber의 비율을 55 대 45로 하여 제작하였다. 이 연구의 주요 목적은 double-strap-joint 로 2차 보강한 샌드위치 보의 정확한 굽힘 거동특성을 알기 위해서이고 2차 보강 접착을 이용한 sandwich 구조의 설계, 유지 및 보수 시의 2차 보강 ply의 두께 및 길이 결정을 제안했다.

Impact Echo Test for the Dynamic Characteristics of a Vibration-Mitigated Concrete Structure

  • Chung, Young-Soo;Park, Young-Goo
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.23-29
    • /
    • 2002
  • Recent construction activities have given rise to civil petitions associated with vibration-induced damages or nuisances. To mitigate unfavorable effects of construction activities, the measures to reduce or isolate from vibration need to be adopted. In this research, a vibration-mitigated concrete, which is one of the active measures for reducing vibration in concrete structures, was investigated. Concrete was mixed with vibration-reducing materials (i.e. latex, rubber power, plastic resin, and polystyrofoam) to reduce vibration and tested to evaluate dynamic material properties and structural characteristics. Normal and high strength concrete specimens with a certain level of damage were also tested for comparisons. In addition, recycling tires and plastic materials were added to produce a vibration-reducing concrete. A total of 32 concrete bars and eight concrete beams were tested to investigate the dynamic material properties and structural characteristics. Wave measurements on concrete bars showed that vibration-mitigated concrete has larger material damping ratio than normal or high strength concrete. Styrofoam turned out to be the most effective vibration-reducing mixture. Flexural vibration tests on eight flexural concrete beams also revealed that material damping ratio of the concrete beams is much smaller than structural damping ratio for all the cases.

  • PDF