• Title/Summary/Keyword: resin composites

Search Result 928, Processing Time 0.029 seconds

Formation of a Carbon Interphase Layer on SiC Fibers Using Electrophoretic Deposition and Infiltration Methods

  • Fitriani, Pipit;Sharma, Amit Siddharth;Lee, Sungho;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • This study examined carbon layer coating on silicon carbide (SiC) fibers by utilizing solid-state and wet chemistry routes to confer toughness to the fiber-reinforced ceramic matrix composites, as an alternative to the conventional pyrolytic carbon (PyC) interphase layer. Electrophoretic deposition (EPD) of carbon black nanoparticles using both AC and DC current sources, and the vacuum infiltration of phenolic resin followed by pyrolysis were tested. Because of the use of a liquid phase, the vacuum infiltration resulted in more uniform and denser carbon coating than the EPD routes with solid carbon black particles. Thereafter, vacuum infiltration with controlled variation in phenolic resin concentration, as well as the iterations of infiltration steps, was improvised to produce a homogeneous carbon coating having a thickness of several hundred nanometers on the SiC fiber. Conclusively, it was demonstrated that the carbon coating on the SiC fiber could be achieved using a simpler method than the conventional chemical vapor deposition technique.

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

Investigation on Mechanical Properties of Flax/Vinyl Ester Natural Fiber Composite (아마/비닐 에스테르 자연 섬유 복합재료의 기계적 특성 분석 연구)

  • Park, Hyunbum;Kong, Changduk;Lee, Jeonghwan;Kim, Ingwon;Lee, Hoyeon
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, an investigation on mechanical properties of flax/vinyl ester natural fiber composite was performed as a precedent study on the design of eco-friendly structure using flax/vinyl ester composite. Vacuum Assisted Resin Transfer Molding(VARTM) manufacturing method was adopted for manufacturing the flax fiber composite specimen. The mechanical properties of the manufactured flax composites were compared with flax composite data cited from some references. Based on this, the experimental data showed that the flax/vinyl ester composite has some advantages when it is applied to environment-friendly structure.

Electrical properties of ABS resin reinforced with recycled CFRP

  • Nishikawa, Takashi;Ogi, Keiji;Tanaka, Toshiro;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Composite materials consisting of crushed carbon fiber reinforced plastics (CFRP) pieces and acrylonitrile-butadiene-styrene (ABS) resin were prepared by an injection mold method to solve the problem of recycling of CFRP. The electrical properties, such as electrical resistivity, alternating current impedance and electromagnetic interference (EMI) shielding effect, were measured for the composites. The electrical resistivity of the composites showed a percolation type of conduction behavior and no difference between parallel and perpendicular to the injection direction was observed for CFRP content higher than the critical value. Measurement of alternating current impedance revealed that the conduction mechanism is attributed to the direct conductive paths generated by distributed carbon fibers; however, strong frequency dependence of the impedance was observed for the CFRP content near the critical one. The frequency dependence of the impedance is caused by the inter-fiber connection and can be expressed as a simple equivalent circuit. The absorption component of shielding effect (SE) was smaller than the expected value estimated from its resistivity. The decline of SE is thought to be caused by the decrease in effective thickness due to fiber orientation.

Effect of Counterpart Roughness on Abrasive Wear Characteristics of Side Plate of FRP Ship (FRP 선박 외판재의 연삭마모 특성에 관한 상대재 거칠기의 영향)

  • Kim, Hyung-Jin;Koh, Sung-Wi;Kim, Jae-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.35-40
    • /
    • 2008
  • The effect of counterpart roughness on abrasive wear characteristics of side plate materials of FRP ship, which were composed of glass fiber and unsaturated polyester resin composites, were investigated at ambient temperature by pin-an-disc friction test. The friction coefficient, wear rate and cumulative wear volume of these materials against SiC abrasive paper were determined experimentally. The wear rate of these materials decreased rapidly with sliding distance and then maintained a constant value. It was increased as counterpart roughness was rougher in a wear test. The cumulative wear volume tended to increase nonlinearly with sliding distance and depended on applied load and sliding speed for these composites. It could be verified by SEM photograph of fracture surface that major failure mechanisms were overlapping layers, microcutting, deformation of resin, delamination, and cracking.

Properties of Composites Reinforced with Fiberglass to Wood and Particleboard Using VARTM (Vacuum Assisted Resin Transfer Molding) Fabrication Process (VARTM (Vacuum Assisted Resin Transfer Molding) 방법에 의해 목재 및 파티클보드를 유리섬유로 보강한 복합소재의 성질)

  • Cha, Jae Kyung;Lee, Sung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • This research investigates the composites reinforced with fiberglass to wood and commercial particleboard using VARTM process to enhance the mechanical properties. Specimens were prepared from lumbers from thinning crop-trees and commercial particleboard. Matched specimen were reinforced on both sides with one layer of unidirectional fiberglass roving. Fiberglass reinforcement to wood and particleboard using VARTM process improved mechanical properties.

DGEBA-MDA-SN-Hydroxyl Group System and Composites : 2. Fracture Energy of Fiber Reinforced Composites (DGEBA-MDA-SN-Hydroxyl Group System의 합성 및 복합재료 제조 : 2. 섬유강화 복합재료의 파괴에너지)

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.737-742
    • /
    • 1994
  • The fracture energy of glass fiber/carbon fiber/epoxy resin hybrid composite system was investigated in the aspect of fracture mechanism. Epoxy resin matrix was DGEBA-MDA-SN-HQ system. On the interface of glass fiber and matrix, post debone friction energy provided a major contribution to the fracture energy, and debonding energy and pull-out energy were of the similar value. In the case of fracture on the interface of carbon fiber and matrix, pull-out energy was the major contributor.

  • PDF

Preparations and Interfacial Phenomena of Hybrid Composites (Hycom) Containing Wasted Stone Powders and Tire Chips (폐석분과 폐타이어 칩을 충진제로 한 혼성복합재(Hycom)의 제조 및 계면현상 연구)

  • Hwang, Teak-Sung;Cha, Ki-Sik
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • In this study, wasted stone powders (WSP) obtained from sludge and Wasted Tire Chips (WTC) as fillers have been used to formulate polymer hybrid composites based on Unsaturated Polyester (UPE) resin. To further enhance not only the interfacial bond between the inorganic filler and the polymer matrix, but also the filler dispersion by wetting the particulate surfaces to uniformly spread the resin during the mixing, silane coupling agent[${\gamma}$-methacryloxy propyl trimethoxy silane (${\gamma}$-MPS)] was used. The influences of organic recycled fillers contents and the concentrations of coupling agent in polymer hybrid composite formulations have been investigated from a mechanical and microstructural point o view through Mercury Porosimeter and SEM.

  • PDF

실험계획법을 이용한 탄소섬유/페놀수지의 강화 cycle연구

  • Ha, Heon-Seung;Lee, Jin-Yong;Jo, Dong-Hwan;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.514-520
    • /
    • 1993
  • In this paper the cure cycle of carbon fiber/phenolic resin was investigated by the Taguchi Method in an experimental design. Experiments were systematically performed using $L_{18}(2^1 \times 3_7)$ orthorgonal array table of the experimental design. In the experimental design, eight compression molding parameters (heating rate, pressing temperature, pressing rate, molding pressure, curing temperature, dwell time at curing temperature, cooling rate and degassing) were considered and the effects of the parameters on the flexural strength and the apparent porosity of carbon fiber/phenolic composites were investigated. The analysis of variance for the experimental results indicated that molding pressure and curing temperature are the most significant parmeters in the flexural strength and the apparent porosity of carbon fiber/phenolic resin composites, respectively.

  • PDF

Characteristics of Complex Foaming Composites' Normal Pressure Foaming of Using Rubber and Bio-Degradable Materials

  • Dong Hun Han;Young Min Kim;Dan Bi Lee;Kyu Hwan Lee;Han-Seong Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.323-329
    • /
    • 2023
  • There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.