• 제목/요약/키워드: resilient materials

Search Result 136, Processing Time 0.033 seconds

An inertia-type hybrid mount combining a rubber mount and a piezostack actuator for naval shipboard equipment

  • Moon, Seok-Jun;Choi, Sang-Min;Nguyen, Vien-Quoc;Oh, Jong-Seok;Choi, Seung-Bok;Chung, Jung-Hoon;Kwon, Jung-Il;Jung, Woo-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.62-80
    • /
    • 2013
  • This paper has been focused on developing a new hybrid mount for shipboard equipment used in naval surface ships and submarines. While the hybrid mount studied in our previous research was 100 kg-class series-type mount, the new hybrid mount has been designed as an inertia-type mount capable of supporting a static of 500 kg. The proposed mount consists of a commercial rubber resilient mount, a piezostack actuator and an inertial mass. The piezostack actuator connected with the inertial mass generates actively the control force. The performances of the proposed mount with a newly designed specific controller have been evaluated in accordance with US military specifications and compared with the passive mount. An isolation system consisting of four proposed mounts and auxiliary devices has been also tested. Through a series of experimental tests, it has been confirmed that the proposed mount provides better performance than the US Navy's standard passive mounts.

Effect of denture cleansers on surface hardness of resilient denture liners at various time intervals- an in vitro study

  • Pahuja, Rasleen Kaur;Garg, Sandeep;Bansal, Sanjay;Dang, Rajat Harvinder
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2013
  • PURPOSE. This study was aimed to determine the effect of two chemically distinct denture cleansers and water on the surface hardness of acrylic and silicone based soft denture liners at various time intervals. MATERIALS AND METHODS. Two commonly used commercial resilient liner material were selected based on their chemical composition (silicone- and acrylic-based soft liners) for this investigation. 120 cylindrical specimens were made of $15mm{\times}10mm$ dimensions (according to ASTM: D-2240-64T) in a custom made metal mold. All specimens were stored in artificial saliva throughout the study. Forty specimens were cleansed daily in 0.5% sodium hypochlorite solution; forty were cleansed in sodium perborate and remaining forty specimens were daily rinsed in water. Testing was done at 1 week, 1 month, 3 months and 6 months for surface hardness using a Shore A Durometer. A mean of 3 reading for each sample was subjected to one-way ANOVA, Post Hoc test and pair-t test for statistical analysis. P values of less than 0.05 were taken as statistically significant. RESULTS. Surface hardness of all the samples was significantly higher after a period of 6 months irrespective of the cleansing treatment. Minor changes were observed between control, sodium hypochlorite and sodium perborate groups with time. Greater change was observed in surface hardness of acrylic-based soft denture liners as compared to silicone-based soft liners for all groups, as time progressed. CONCLUSION. Silicone-based soft denture liners performed significantly better in all cleansing treatments than acrylic-based soft denture liners.

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Estimate of the Bearing Capacity on Subbase and Subgrade with Dynamic Plate Bearing Test (동평판재하시험을 이용한 도로하부 재료의 지지력 평가)

  • Youn, Ilro;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.53-60
    • /
    • 2013
  • The compaction control method of national road substructure is using field density test to determine the relative compaction and plate bearing test to check the load bearing capacity. However, these two tests digitize a construction site manager's judgment based on his experience, so mechanical basis is weak. Resilient modulus method, which is recently being used to resolve such problem, is evaluated as a rational design method of pavement structure that can rationally reflect the stress-strain state of pavement materials that is caused by the condition of load repetition of vehicle load. However, the method of measuring the resilient modulus is difficult and lengthy, and it has many problems. To replace it, light falling weight test is recently being proposed as a simple test method. Therefore, this research uses dynamic plate loading test, which quickly and simply measures the elastic modulus of the subgrade and sub-base construction and site of maintenance, to judge the possibility of compaction control of the stratum under the road, and it proposes relation formula by analyzing the result of static load test.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

A Study on Interior Flooring Materials for Safe Elderly Nursing Home Environment (안전한 노인요양시설 환경을 위한 실내 바닥마감재에 관한 연구)

  • Chung, Miryum
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.19-26
    • /
    • 2014
  • The number of elderly who wants to access to Nursing Homes (NH) will increase due to the rapid aging society and domestic changes. Those who move into NH expect 24/7 care service in safe environment. Providing space free from danger, especially from fall, for the frail elderly is essential. The purpose of this study is to categorize performance needs of flooring materials in the aspect of safety, and analyze materials so that adequate ones for each space in NH can be suggested. Performance needs are as follows; slip resistance (dry/wet), fire resistance, resilience, water resistance, soil retardant, anti-bacterial, gloss, sound absorbtion. maintenance, durability, ease replacement, color and pattern variety, visual and tactual texture, tactile warmth, IAQ, sustainable material (before use), impact to nature (after use). They are categorized under function, economy, sensibility and sustainability. It was found that there are better materials than common ones that has been used repeatedly in NHs, such as vinyl sheets and VCT. In overall, Cork flooring and nylon carpet met all four categories, followed by wool carpet, rubber and linoleum. For bedroom, wood flooring, Cork, rubber, wool carpet, nylon carpets were suggested. In bathroom with shower, rubber, vinyl sheet and porcelain tiles were safe materials. As living/dining room and corridor floors, wool carpet, nylon carpet, cork flooring would be excellent as they are resilient and durable. The result of this paper can be used by both NH managers and material companies, resulting better quality of life of the elderly by providing safe environment.

Traditional Foods: Historical Perspectives and Future Prospects (문화와 과학의 융합적 관점에서 본 전통음식의 역사 및 미래)

  • Kim, Hee Sup
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Traditional cuisine reflects cooking traditions shaped by political, economic, social, cultural, and environmental conditions characterized by authenticity and uniqueness. Traditional food is not only a part of our cultural heritage but also a knowledge resource. Application of food science and technology in Korean traditional foods was reviewed from six points of view, including food preservation, fermentation, changes in food materials, utilization of food functionality, and packaging and development of cooking appliances. Books from disparate times were chosen in order to cover a wide range of materials from the past to the present. Food preservation and fermentation techniques were applied to various food materials. Combination of science and skills contributes to the accessibility of diverse food materials and better quality foods. Koreans use assorted and resilient plants, which have an abundance of functional substances such as food materials. Among cooking appliances, microwave oven and refrigerator are the most innovative products with huge influences on food eating patterns as well as lifestyle. Packaging effectively reduces post-harvest preservation losses, and better packaging has technical improvements for storage and distribution. Kimchi was chosen as an example in order to study technology from the past to the present. Availability of Kimchi cabbage, enrichment of functional ingredients, identification of useful microbial species, standardization of recipe for commercialization, prevention of texture softening, introduction of salted Kimchi cabbage and Kimchi refrigerators, and packaging were reviewed. The future of traditional foods in the market will be competitive. First, traditional foods market should be maintained to protect the diversity of food materials. Secondly, tailored foods for individuals should be considered using foods with functional properties. Information on health benefits would provide insights into health and traditional food products. Third, speedy transfer of new technology to the traditional food industry is needed to ensure food quality production and new opportunities in the market. Fourth, safety of traditional foods should be ensured without sacrificing the essential characteristics of culturally important foods. Improvement of logistics, distribution, and facility should be carried out. As demand for convenience foods increases, traditional foods should be developed into products.

An Experiment Study on Floor-Impact Sound Insulation by Resilient Materials in Apartment Buildings (완충재의 종류에 따른 공동주택 바닥충격음 차단성능에 관한 실험연구)

  • Youn, Se Cheol;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.217-225
    • /
    • 2005
  • In apartment buildings, floor-impact sound has bean regarded as the major source which induces complaints from residents. It is mainly due to the use of light-weight structures. The vibration produced by impact on one part of an apartment building would travel as far as the other parts of structure with a little alleviation. As a result, the impact sound from upstairs has been regarded as a main source of noise causing discontentment among occupants. This study was carried out to measure the floor-impact sound levels and evaluate the insulation performance of floor-impact sound for nine apartment buildings. The floor-impact sound levels were measured for twenty-five On-dol floor structures and various factors which influence the floor-impact sound were analyzed.

Mesh Reinforced Cement as New Shipbuilding Material (새로운 선재(船材)로서의 Mesh Reinforced Cement)

  • Joon-Ho,Yu;Hun-Chol,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.1
    • /
    • pp.21-31
    • /
    • 1972
  • When one speaks of a concrete ship, most people have an impression of heavy solid rough edged masses of concrete very unlike anything floatable. In the form represented by what is called "MRC", concrete does, however, become light, homogeneous, elastic, resilient, and above all strong still retaining the basic benefit of inexpensive well known concrete properties. The fundamental principal behind this material as a new shipbuilding material is based on the development of "ferro-cement" in the early 1940s by an Italian Engineer Pierre Luigi-Nervi. The "MRC" or Mesh Reinforced Cement has been studied by Korea institute of Science and Technology in connection with a research project "The Small Ship Construction Utilizing Domestic Materials And Its Economic Analysis," of which reports have been issued previously. In this exporsition, some of the basic qualities of "MRC" are discussed in general terms.

  • PDF