• Title/Summary/Keyword: residual-wood biochar

Search Result 1, Processing Time 0.016 seconds

Effect of biochar application on growth of Chinese cabbage (Brassica chinensis)

  • Oh, Taek-Keun;Lee, Jae-Han;Kim, Su-Hun;Lee, Ho Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.359-365
    • /
    • 2017
  • Biochar has the ability to mitigate climate change, improve crop productivity, and adsorb various contaminants. The aim of this work was to confirm the effect of biochar as a soil amendment on growth of Chinese cabbage (Brassica chinensis) using a pot experiment. Biochar was produced from residual-wood burnt at a pyrolytic temperature of $400^{\circ}C$ and consisted of 51.6 % carbon (C) by mass. The biochar was added to the soil at 0, 1, 3, and 5% by weight, which represent about 0, 18, 54, and $90t\;ha^{-1}$, respectively. The treatments were arranged in a randomized complete block design with 3 replications. The Chinese cabbage was grown for 49 days in a glasshouse in pots filled with sandy loam soil. Experimental results showed that the residual-wood biochar used for the experiment was slightly alkaline (pH 7.5). The fresh weights of Chinese cabbage were 86.22 g, 84.1 g, 63.23 g and 70.87 g, respectively, for biochar applications at 0, 18, 54, and $90t\;ha^{-1}$. Compared with the control (i.e., no biochar), biochar application increased soil pH and electrical conductivity (EC). Addition of biochar (54 and $90t\;ha^{-1}$) to sandy loam soil had no effect on growth of Chinese cabbage. This might be due to excessive increase of soil pH from the biochar application, leading to reduced availability of plant nutrients. Based on these results, the authors conclude that an excessive addition of biochar may have negative effects on the healthy growth of Chinese cabbage.