• 제목/요약/키워드: residual thermal stress

검색결과 521건 처리시간 0.033초

열응력과 잔류응력하의 다층박막의 피로수명 해석 (Fatigue Life Analysis on Multi-Stacked Film Under Thermal and Residual Stresses)

  • 박준협
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.526-533
    • /
    • 2005
  • Reliability problem in inkjet printhead, one of MEMS devices, is also very important. To eject an ink drop, the temperature of heater must be high so that ink contacting with surface reaches above $280^{o}C$ on the instant. Its heater is embedded in the thin multi-layer in which several materials are deposited. MEMS processes are the main sources of residual stresses development. Residual stress is one of the factors reducing the reliability of MEMS devices. We measured residual stresses of single layers that consist of multilayer. FE analysis is performed using design of experiment(DOE). Transient analysis for heat transfer is performed to get a temperature distribution. And then static analysis is performed with the temperature distribution obtained by heat transfer analysis and the measured residual stresses to get a stress distribution in the structure. Although the residual stress is bigger than thermal stress, thermal stress is more influential on fatigue life.

압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가 (Evaluation of the Residual Stress with Respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor)

  • 심재준;한동섭;한근조
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.532-538
    • /
    • 2004
  • MEMS technology applying to the sensors and micro-electro devices is complete system. These microsystems are made by variable processes. Especially, the mentallization process has very important functions to transfer the power operating the sensor and signal induced from sensor part. But in the structures of MEMS the local stress concentration and deformation are often yielded by an irregular geometrical shape and different constraint. Therefore, this paper studies the effect of supporting type and thickness ratio about thin film of the substrate on the residual stress variation when the thermal loads is applied to the multi-layer thin film fabricated by metallization process. Specimens were made from several materials such as Al, Au and Cu. Then, uniform thermal load was applied, repeatedly. The residual stress was measured by FE Analysis and nano-indentation method using AFM. Generally, the specimen made of Al induced the larger residual stress than that of made of other materials. Specimen made of Cu and Au having the low thermal expansion coefficient induces the minimum residual stress. Similarly, the lowest indentation length was measured by nano-indentation method in the Si/Au/Cu specimen. Particularly, clusters are created in the specimen made of Cu by thermal load and the indentation length became increasingly large by cluster formation.

열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발 (A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels)

  • 전융제;윤지강;이재민;김선호;김영천;남승훈;노우람
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구 (Thermal residual stress behavior in fiber metal laminates)

  • 김세영;최원종;박상윤;문초록
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.39-44
    • /
    • 2005
  • 섬유금속적층판(Fiber Metal Laminates, 이하 FML)에서 알루미늄과 유리섬유/에폭시 복합재료 사이의 열팽창 계수의 차이는 경화공정 시 FML내부에 열 잔류응력을 남기게 되며, 이러한 열 잔류응력은 FML의 피로특성과 항복강도에 영향을 주게 된다. 잔류응력을 예측하기 위해 두 가지 실험법이 제안 되었으며, 이론식을 통해 그 결과를 예측하고, 실제 실험을 수행하여 그 값을 확인 하였다. 또한, 열 잔류응력의 제거 및 응력의 역전을 위하여 후-인발 가공이 수행 되었으며, 가공 이후 발생한 FML내의 잔류응력이 측정 되었다. 예측된 열 잔류응력 결과와 실험을 통한 값이 일치함을 보이며, 후-인발 가공을 통하여 열 잔류응력 제거 및 항복강도의 증가가 발생하였다.

압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가 (Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor)

  • 심재준;한근조;김태형;한동섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

이종재료의 레이저용접에서 잔류응력 평가 (The Study on Residual Stress of Laser Weldment for the Heterogeneous Materials)

  • 오세헌;민택기
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.119-125
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is bi-metallic system made of heterogeneous metals and these is bonded by laser welding. But laser welding induces the non-uniform temperature distribution and locally residual stress is yielded by these temperature deviation. This paper studies residual stress of laser weldment using FEA and hole drilling method. The results are followed. In the case of heterogeneous materials weldment, higher residual stress induced in the weldment region of SUS 304 which have larger CTE than Ni 36 and residual stress on the middle of specimen is higher by 10.9% than that of its surface Measured residual stress of SUS 304 yield 481MPa and that of Ni 36 is 140.5MPa in the vicinity of the welding region. And the residual distribution is very similar in comparison with FEA result.

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

경화 및 냉각을 거친 LED 패키징 실리콘의 잔류응력에 대한 수치해석적 고찰 (A numerical study on the residual stress in LED encapsulment silicone after curing and cooling)

  • 송민재;김권희;강정진;김흥규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.425-428
    • /
    • 2009
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. To mold a solid-state silicone encapsulment, curing by mixing at elevated temperatures followed by cooling is necessary. As the silicone molding process is involved in healing and subsequent cooling, the thermal residual stress, which causes mechanical warpage or optical birefringence in the final silicone encapsulment, may be induced if there are non-uniformities in cured silicone material properties or encapsulment shape design. The prediction of residual stress is necessary to design a high-quality silicone molding process. Therefore, in the present paper, a numerical parametric study was attempted to evaluate the heating and cooling effects on the thermal residual stress induced in the cured silicone.

  • PDF

용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링 (Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress)

  • 장경복;강성수
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

접착제의 두께와 열 응력에 따른 조인트의 토크 특성 (Effects of the Adhesive Thickness and Residual Thermal Stress on the Torque Capacity of Turbular Single Lap Joints)

  • 최진호;이대길
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1841-1852
    • /
    • 1992
  • 본 연구에서는 Fig.1과 같이 원형튜브 형태로된 시편과 실린더 형태의 시편을 Single Lap Joint의 형태로 접착하여 접착제의 두께에 대한 정적 비틀림 강도특성을 실험하였으며, 접착제의 경화시 외부에서 가해주는 열로 인한 열 잔류응력의 영향에 대한 연구를 수행하였다. 또한 이론적인 해석과 상용 프로그램인 ANSYS를 이용하여 유한요소해석을 병형하여 실험결과와 비교 검토하였다.