• 제목/요약/키워드: residual strength

검색결과 1,406건 처리시간 0.027초

피로강도 및 수명에 미치는 Shot Peening에 의한 잔류응력의 영향 (Influence of residual stress due to shot peening on fatigue strength and life)

  • 이종규;김정규
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1498-1506
    • /
    • 1997
  • Procedures are presented for influence of shot peening on fatigue strength, fatigue life and effects of shot peening are discussed from experiments were taken between shot peened and unpeened SPS5, SM45C specimens. After the residual stress on shot peened specimens was measured by X-ray diffractometer, rotating bending fatigue tests were carried out. In addition, the compressive residual stress profile was obtained by the superposition method of three stresses which is based on Al-Obaid's equation. Predicted fatigue life considering residual stress profile which was obtained by the Al-Obaid's equation and another predicted fatigue life considering residual stress profile which was measured in test were compared. For the purpose of predicting fatigue life, Morrow's equation considering the residual stress and mean stress was used.

용접 잔류음력을 고려한 강구조물의 피로강도평가 (A Numerical Estimation of Fatigue Strength of Welded Steel Structures with Residual Stresses)

  • 정흥진;유병찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.265-270
    • /
    • 2007
  • According to previous research, welding-induced residual stresses in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Thee welding-induced residual stresses need be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation. In this study, a fatigue Analysis technique for steel structures with welding induced residual stress is presented. First, We calculate the history of temperature according with welding process. Secondly, residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis and lastly, fatigue strength is estimated with modified Goodman equation which can consider the effect of mean stress level.

  • PDF

고강도강재의 고온인장특성 및 용접시 잔류응력특징에 관한 연구 (A Study on the High Temperature Tensile Property and the Characteristics of Residual Stress in Welds of High Strength Steels)

  • 장경호;이진형;신영의
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.50-58
    • /
    • 2004
  • In this study, high temperature tensile properties of high strength steels(POSTEN60, POSTEN80) were investigated. The three-dimensional thermal elastic-plastic analyses were conducted to investigate the characteristics of welding residual stresses in welds of high strength steels on the basis of thermal and mechanical properites at high temperature obtained from the experiment. According to the results, high temperature tensile strength of POSTEN60 steel deteriorated slowly to 10$0^{\circ}C$. As the temperature went up, the tensile strength became better because of blue shortness, and it deteriorated radically after reaching to the maximum value around 30$0^{\circ}C$. For the POSTEN80 steel, high temperature tensile strength deteriorated slowly to 20$0^{\circ}C$. As the temperature went up the tensile strength became better and it deteriorated slowly to $600^{\circ}C$ after reached to the maximum value around 30$0^{\circ}C$. Strain of high strength steels at the elevated temperature increased radically after the mercury rose to $600^{\circ}C$. The strain hardening ratio of POSTEN60 steel was larger then that of POSTEN80 steel at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 40$0^{\circ}C$. And, in the welding of high strength steels, increasing tensile strength of the steel (POSTEN60

자기질 요지의 강도에 미치는 석영입도의 영향 (Influence of Particle Size of Quartz on the Strength of Porcelain Body)

  • 이은상;김진영
    • 한국세라믹학회지
    • /
    • 제21권3호
    • /
    • pp.209-216
    • /
    • 1984
  • The influence of the particle size of quartz and the change of cooling rate to the strength of conventional triaxial porcelain was studied, . The results indicate that 1. The residual quartz content was increased by particle size increasing. And the strength was increased by increas-ing residual quartz content which increased the total stress in the specimen. But the influence of residual quartz was lessened by the extent of crack between quartz particle and glass matrix 2. In order to increase the strength of the body fast cooling is suitable to small quartz particle and slow cooling is suitable to large quartz particle.

  • PDF

매설 가스 배관 이종금속 용접부의 강도 불일치가 잔류응력에 미치는 영향 고찰 (Investigation on the Effect of Strength Mismatch on Residual Stresses in Welds with Different Strength Used in Buried Natural Gas Pipeline)

  • 김종성;김우식;백종현
    • 대한기계학회논문집A
    • /
    • 제34권4호
    • /
    • pp.413-421
    • /
    • 2010
  • 본 연구에서는 실제 용접 과정을 모사하는 유한요소 해석을 이용하여 강도 불일치를 가지는 매설 천연가스 배관 용접부의 잔류응력 분포를 계산한다. 유한요소 해석 절차의 타당성을 검증하기 위해 온도 및 잔류응력 해석 결과들은 실제 용융부 형상과 API 579 적용 결과와 비교된다. 기계적 강도 차이, 용접 금속의 강도, 덧살 및 입열량 등과 같은 용접 및 재료 변수들이 잔류응력 분포에 미치는 영향을 평가하기 위해 Parametric Study가 수행된다. 최종적으로 Parametric Study 결과에 근거하여 용접 및 재료 변수들의 영향이 고찰된다. 특히, 모재들 사이의 강도 불일치는 잔류응력 분포에 미미한 영향을 미침을 확인하였다.

충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구 (Residual Strength of Fiber Metal Laminates After Impact)

  • 남현욱;이용태;정창규;한경섭
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

강관철근을 보강한 합성기둥의 3시간 가열 후 잔존 압축력 실험평가 (Evaluation of Residual Strength and Behavior of Reinforced STG 800 Welded Square Composite Column after Fire 3 Hour)

  • 김선희;염경수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.242-243
    • /
    • 2021
  • The concrete inside the steel tube of CFT columns enables them to have great strength and ductility. CFT columns are also excellent in fire-resistance because explosive heat upon a fire can be contained in the tube by the concrete debris. However, the studies to evaluate the residual strength of CFT columns after a fire have not been conducted enough. The studies to evaluate the residual strength of CFT columns after a fire are indispensable because it is the barometer of the damage of composite columns caused by a fire and the degree of repair and reinforcement work for the columns after a fire. Accordingly, the purpose of this study is to evaluate the deterioration of load capacity and structural behavior of square CFT columns with the same shapes and boundary conditions before and after a fire. The study also evaluates the influential factors of the CFT columns reinforced to secure the residual strength after a fire.

  • PDF

세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성 (Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint)

  • 박영철;허선철;부명환;김현수;강재욱
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

外力의 效果를 고려한 熔接部의 最終强度에 대한 評價 (An Assessment on the Ultimate Strength of Welding Joint by the Effect of External Force)

  • 방한서;차용훈;오우석
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.20-29
    • /
    • 1995
  • When structures are constructed by welding, structural elements are always accompained by welding residual stress and deformation. Therefore, when the rigidity and strength of the welded structures is considered, it is very important to have sufficient information about the effect of initial deflection and welding residual stress on them. In this paper, the square plates with welding residual stress under compression are dealt with; First, heat conduction and thermal elastic-plastic problems are analyzed by finite element method using 4-node isoparametric elements for assessment on the ultimate strength of welding joint. Later, the ultimate strength of welding joint is assessed by examining the effect of changed type of loading. The specimens are 500{\times}$500mm(a/b=1) and 750{\times}$500mm(a/b=1.5) rectangular plates of whichthicknesses is 9.0mm and simply supported plates getting axiul load in each direction.

  • PDF

레이저용접부의 파괴에 미치는 잔류응력의 영향 (The Effect of residual stress for fracture behavior in the laser weldment)

  • 조성규;양영수
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 춘계학술발표대회 논문집
    • /
    • pp.3-8
    • /
    • 2006
  • The integrity of laser welded structures is decided with fracture strength and fatigue strength. This study presents fracture behavior considering residual stress in the laser welding. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF