• 제목/요약/키워드: residual strength

검색결과 1,404건 처리시간 0.032초

고속충격을 받는 CFRP 복합재료의 잔류강도 예측 (Prediction of Residual Strength of CFRP Subjected to High Velocity Impact)

  • 박근철;김문생
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.600-611
    • /
    • 1994
  • The purpose of this research is to propose a model for the prediction of residual strength. For this purpose, two-paremeter model based on Caprino's is developed and formulated by the ratio of indentation due to impact and normalized residual strength. The damage zone is considered only as an indentation. Impact tests are carried out on laminated composites by steel balls. Test material is carbon/epoxy laminate. The specimens are composed of $[{\pm}45^{\circ}/0^{\circ}/90^{\circ}]_2$ and $[\pm}45^{\circ}]_4$ stacking sequence and have $0.75^T{\times}0.26^W{\times}100^L(mm) dimension. A proposed model shows a good correlation with the experimental results And failure mechanism due to high impact velocity is discussed on CFRP laminates to examine the initiation and development of damage by fractography and ultrasonic image ststem. The effect of the unidirectional ply position on the residual strength is considered here.

쇼트피이닝한 부재의 피로수명 예측 및 피로강도 평가 (Fatigue Life Prediction and Strength Evaluation of Shot Peened Parts)

  • 김환두;이순복
    • 한국기계연구소 소보
    • /
    • 통권15호
    • /
    • pp.75-87
    • /
    • 1985
  • A review was performed on fatigue life prediction and strength evaluation of shot peened parts. Fatigue strength of machine parts can be improved by shot peening due to compressive residual stresses on such parts. Compressive residual stress cannot be uniquely define by peening intensity. Several measuring methods of residual stress and the principle of hole drilling method are presented. Exploratory measurement of residual stress was performed on the shot peened SM35C plate with the hole drilling method. Fatigue life and failure location of shot peened parts under bending load can be predicted by a damage parameter which is incorporated with material properties, residual stress, and applied stress conditions. Some method are presented to predict the fatigue strength of shot peened parts at any given life. Shot peening gives its full benefit to the notched machine parts of high strength steels.

  • PDF

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구 (A study on torsional strength of induction hardened axle shaft)

  • 강대현;이범재;윤창배;김강욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF

Shot peening 가공에 의한 노치재의 응력분포와 피로강도의 개선 (The Stress Distribution and Improvement of fatigue Strength for Notched Materials by Shot Peening)

  • 이승호;김희송
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.120-126
    • /
    • 1998
  • Second step shot peening was applied on both smooth specimen and U-notch specimen in order to investigate the stress distribution and the improvement in fatigue strength. Various experiments and measurements such as rotary bending fatigue test and the measurement of compressive residual stress were performed. The results showed that the fatigue strength of second step shot peened specimens increased by 34 percent compared to that of unpeened ones. Compressive residual stress also considerably increased, which resulted in the increase of fatigue strength. finite element analysis showed that shot peening is effective in decreasing the bending stress by external force. The effectiveness of shot peening in reducing the compressive residual stress was anticipated by the superposition of the concentrated stress and the compressive residual stress.

  • PDF

피로수명예측을 위한 잔류강도 저하모델의 파라미터 결정법 제안(II) (A Proposal of parameter Determination Method in the Residual Strength Degradation Model for the Prediction of Fatigue Life(II))

  • 김상태;장성수
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1452-1460
    • /
    • 2001
  • A new method of parameter determination in the fatigue residual strength degradation model is proposed. The new method and minimization technique is compared experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron and graphite/epoxy laminate. It is shown that the correlation between the experimental results and the theoretical prediction on the fatigue life and residual strength distribution using the proposed method is very reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than minimization technique for the prediction of the fatigue characteristics.

Impact damage and residual bending strength of CFRP composite laminates involved difference of fiber stacking orientation and matrics

  • 심재기;양인영;오택열
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.152-162
    • /
    • 1993
  • The purpose of this study is to investigate problems of residual bending strength and the impact damage experimentally when CFRP composite laminates are subjected to Foreign object damage. The specimens composed of four types of CR/EPOXY and a CF/PEEK composite laminates which involved difference of fiber stracking orientation and matrics. The result were summariged as follows : 1) It is found that both orthotropic and guasi-isotropic composite laminates are increasimg lineally between impact energy and damage delamination area. 2) Delamination devel- opment energy(mm$^{2}$J) OF cf/epoxy composite aminates is less than that of CF/PEEK. 3) When impact energy is applied to specimens within 3J, the residual strength of orthotropic is greater than guasi-isotropic composite laminates. On the other hand, it is predicted that residual bending strength of orthotropic composite laminates is less than that of quasi-isotropic when impact energy is more thaen 3J. 4) It is found in CF/PEEK that for the impact side compression, residual of bending strength versus impact energy is almost constant, while in case of impact side tension, residual bending strength is decreased rapidly near 1.2J. of impact energy due to the effect of delamination buckling.

  • PDF

상수도 금속관의 잔존 인장강도 추정모델 개발 (Development of Residual Tensile Strength Prediction Model for Metallic Water Pipes)

  • 배철호;김정현;우형민;홍성호
    • 한국지반환경공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.17-28
    • /
    • 2008
  • 본 연구에서는 상수도 금속관의 공식특성에 따른 잔존 인장강도 예측모델을 제안하였다. 이들 모델중 회주철관에 대해서는 지수함수형 모델이 실측값에 대한 예측값의 상관성($R^2$)이 높게 나타났으며, 닥타일주철관과 강관 등은 선형함수인 공식특성에 따른 강도손실 모델이 더 예측력이 높은 것으로 나타났다. 국내에서 과거에 제조된 상수도 금속관의 파괴인성은 평균적으로 회주철관이 $40.46kgf/mm^2{\sqrt{mm}}$, 닥타일주철관이 $85.27kgf/mm^2{\sqrt{mm}}$, 그리고 강관이 $97.27kgf/mm^2{\sqrt{mm}}$로 나타났으며, 파괴인성을 이용한 잔존 인장강도 예측모델의 실측값에 대한 예측값의 상관성은 관종에 따라 다르나 0.44에서 0.86로 나타났다. 특히 이들 제안된 모델들을 새로운 지역에 매설된 상수관로에 대하여 적용한 결과, 결정계수가 0.76~0.78로 나타나 향후 노후 상수도 금속관의 잔존 강도를 예측하는데 활용됨으로서 합리적인 개대체 의사결정에도 도움을 줄 수 있을 것으로 판단된다.

  • PDF

2단쇼트피닝에 의한 피로특성의 향상 (The Improvement of Fatigue Properties by 2-step Shot Peening)

  • 이승호;심동석
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구 (A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage)

  • 공창덕;박현범;이승현
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.24-29
    • /
    • 2009
  • 본 연구에서는 알루미늄 허니컴 코어와 카본 면재가 적용된 샌드위치 복합재 구조에 대해 준정적 압입 손상 이후의 잔류 강도 평가에 대한 연구를 수행하였다. 3점 굽힘 시험과 압축 시험을 통해 시편의 강도를 확인하고 시편에 손상을 모사하기 위하여 준정적 압입 손상을 가하였다. 손상된 시편을 손상 전 시편과 동일한 시험을 통해 손상 전의 강도와 비교하였다. 압입 손상 이후 압축 강도와 굽힘 강도는 압입 깊이의 증가에 따라 강도가 감소하였고 손상 단계에 따른 잔류 강도 정도를 확인하였다.