• Title/Summary/Keyword: residual range

Search Result 895, Processing Time 0.025 seconds

Residual Stress Prediction and Hardness Evaluation within Cross Ball Grooved Inner Race by Cold Upsetting Process (냉간 업셋팅 공정에 의한 경사형 볼 그루브를 갖는 내륜의 잔류응력 예측 및 경도 평가)

  • T.W. Ku
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.180-190
    • /
    • 2023
  • This study deals with residual stress prediction and hardness evaluation within cross ball grooved inner race fabricated by cold upsetting process consisted of upsetting and ejection steps. A raw workpiece material of AISI 5120H (SCr420H) is first spheroidized and annealed, then phosphophyllite coated to form solid lubricant layer on its outer surface. To investigate influences of the heat treatment, uni-axial compression tests and Vickers micro-hardness measurements are conducted. Three-dimensional elasto-plastic FE simulations on the upsetting step and the ejection one are performed to visualize the residual stress and the ductile (plastic deformation) damage. External feature of the fabricated inner race is fully captured by using an optical 3D scanner, and the micro-hardness is measured on internal cross-sections. Consequently, the dimensional compatibility between the simulated inner race and the fabricated one is ensured with a difference of under 0.243mm that satisfied permissible error range of ±0.50mm on the grooved surface, and the predicted residual stress is verified to have similar distribution tendency with the measured Vickers micro-hardness.

Application of welding simulation to block joints in shipbuilding and assessment of welding-induced residual stresses and distortions

  • Fricke, Wolfgang;Zacke, Sonja
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.459-470
    • /
    • 2014
  • During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.

Analysing the Effect of Residual Chlorine Equalization for Water Quality Improvement in Water Distribution System (공급과정 수질개선을 위한 잔류염소 균등화 효과분석)

  • Choi, Taeho;Lee, Doojin;Bae, Cheolho;Moon, Jiyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2016
  • This study attempts to draw factors for an analysis of the operation effect of a rechlorination facility and autodrain equipment for residual chlorine equalization by installing and operating a rechlorination facility and autodrain equipment in P City and analyzing the practical evaluation method and operation effect. For this purpose, this study selected three indicators for an analysis of the effectiveness of residual chlorine equalization and conducted a comparative analysis before and after the implementation of the residual chlorine equalization. As a result of estimation, (1) the reduction of the residual chlorine concentration range from a water treatment plant to the pipe end was 16.0%; (2) the total reduction of chlorination input was 18.0%; and (3) the reduction of the generation of disinfection by-products was 19.5%. In addition, this achieved enough residual chlorine equalization in the supply process and shows that it could successfully achieve the economic feasibility of investment in equipment and the reduction of the generation of disinfection by-products. Like this, it is judged that the three indicators suggested in this study will be used sufficiently as indicators of an analysis of the effectiveness of residual chlorine equalization according to the operations of the rechlorination facility and autodrain equipment.

Fabrication and Performance Evaluation of Zinc Oxide Varistors for the Arresters used for Station System (발변전소 피뢰기용 산화아연소자의 제작 및 성능평가)

  • Cho, Han-Goo;Han, Se-Won;Kim, Suk-Soo;Yoon, Han-Soo;Lee, Un-Yong;O, Cheol-Gyu;Yu, Kun-Yang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.636-639
    • /
    • 2004
  • This paper presents the fabrication and performance evaluation of zinc oxide varistors for the arresters used for station system. ZnO varistors were fabricated with typical ceramic production methods and the structural and electrical characteristics were investigated. All varistors exhibited high density, which were in the range of $5.41{\sim}5.49g/cm^3$. In the electrical properties the reference voltage increased in the range of $4.410{\sim}5.250kV$ with increasing their thickness and the residual voltage exhibited the same trends as the reference voltage. In the long duration current impulse withstand test, E-2 and F-1 samples failed in the two and four shots, respectively, but E-1 and F-2 samples survived 18 shots during the test. Before and after this test, the variation ratio of residual voltage of E-1 and F-2 samples were -0.34% and 0.05%, respectively, which were in the acceptance range of 5%. According to the results of tests, it is thought that if the fabrication process such as insulating coating, sintering condition, and soldering method is improved, these ZnO varistors would be possible to apply to the station class arresters in the new future.

  • PDF

Influence of Metallic Sodium on Repair Weldability for Type 316FR Stainless Steel

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Lee, Ju-Seung;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The effect of residual metallic sodium on the solidification cracking susceptibility of type 316FR stainless steel was investigated via transverse-Varestraint tests. And a solidification brittle temperature range (BTR) of type 316FR stainless steel was 37 K. However, the BTR expanded from 37 to 67 K, as the amount of metallic sodium at the specimen surface increased from 0 to $7.99mg/cm^2$. Microstructural observation of the weld metal suggested that metallic sodium existed in the weld metal, including in the cell boundaries, during welding solidification. Thermodynamic calculations suggested that sodium expanded the temperature range of solidliquid coexistence during welding solidification of the steel weld metal. Therefore, the increased solidification cracking susceptibility (i.e., expansion of the BTR) in the residual sodium environment was attributed to enhanced segregation of sodium during the welding solidification; this segregation, in turn, resulted in an expanded temperature range of solid-liquid coexistence.

Evaluation of Various Tone Mapping Operators for Backward Compatible JPEG Image Coding

  • Choi, Seungcheol;Kwon, Oh-Jin;Jang, Dukhyun;Choi, Seokrim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3672-3684
    • /
    • 2015
  • Recently, the standardization of backward compatible JPEG image coding for high dynamic range (HDR) image has been undertaken to establish an international standard called "JPEG XT." The JPEG XT consists of two layers: the base layer and the residual layer. The base layer contains tone mapped low dynamic range (LDR) image data and the residual layer contains the error signal used to reconstruct the HDR image. This paper gives the result of a study to evaluate the overall performance of tone mapping operators (TMOs) for this standard. The evaluation is performed using five HDR image datasets and six TMOs for profiles A, B, and C of the proposed JPEG XT standard. The Tone Mapped image Quality Index (TMQI) and no reference image quality assessment (NR IQA) are used for measuring the LDR image quality. The peak signal to noise ratio (PSNR) is used to evaluate the overall compression performance of JPEG XT profiles A, B, and C. In TMQI and NR IQA measurements, TMOs using display adaptive tone mapping and adaptive logarithmic mapping each gave good results. A TMO using adaptive logarithmic mapping gave good PSNRs.

Influence of Applied Current Density on Properties of Cu thin layer Electrodeposited from Copper Pyrophosphate Bath (피로인산동 도금용액으로부터 전기도금 된 Cu 도금층의 물성에 미치는 인가전류밀도의 영향)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.190-199
    • /
    • 2020
  • Copper pyrophosphate baths were employed in order to study the dependencies of current efficiency, residual stress, surface morphology and microstructure of electrodeposited Cu thin layers on applied current density. The current efficiency was obtained to be more than about 90 %, independent of the applied current density. Residual stress of Cu electrodeposits was measured to be in the range of -30 MPa and 25 MPa with the increase of applied current density from 0.5 to 15 mA/㎠. Relatively smooth surface morphologies of the electodeposited Cu layers were obtained at an intermediate current range between 3 and 4 mA/㎠. The Cu electrodeposits showed FCC(111), FCC(200), and FCC(220) peaks and any preferred orientation was not observed in this study. The average crystalline size of Cu thin layers was measured to be in the range of 44~69 nm.

Incremental Strategy-based Residual Regression Networks for Node Localization in Wireless Sensor Networks

  • Zou, Dongyao;Sun, Guohao;Li, Zhigang;Xi, Guangyong;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2627-2647
    • /
    • 2022
  • The easy scalability and low cost of range-free localization algorithms have led to their wide attention and application in node localization of wireless sensor networks. However, the existing range-free localization algorithms still have problems, such as large cumulative errors and poor localization performance. To solve these problems, an incremental strategy-based residual regression network is proposed for node localization in wireless sensor networks. The algorithm predicts the coordinates of the nodes to be solved by building a deep learning model and fine-tunes the prediction results by regression based on the intersection of the communication range between the predicted and real coordinates and the loss function, which improves the localization performance of the algorithm. Moreover, a correction scheme is proposed to correct the augmented data in the incremental strategy, which reduces the cumulative error generated during the algorithm localization. The analysis through simulation experiments demonstrates that our proposed algorithm has strong robustness and has obvious advantages in localization performance compared with other algorithms.

Measurement of Mechanical Properties of a Thermally Evaporated Gold Film Using Blister Test (블리스터 시험법을 이용한 열증착 금박막의 기계적 성질 측정)

  • Moon, Ho-Jeong;Ham, Soon-Sik;Earmme, Yun-Young;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.882-890
    • /
    • 1996
  • Mechanical properties, including Young's modulus, residual stress and rupture strength, of a thermally evaporated gold film have been measured form a blister test. In a theoretical study, the priniple of minimum potential energy and that of virtual work have been applied to the pressurized circular membrane problem, and load-deflection relations have been derived for typical membrane deflection mode of spheroidal shape. In an experimental study, circular gold membranes of 4800 A-thickness and 3.5mm diameter were fabricated by the silicon electropolishing technique. Mecahnical properties of the thin gold films were deduced from the load-deflection curves obtained by the blister test, Young's moduli, obtianed from blister test, have been in the range of 45-70 GPa, while those of bulk gold have been in the range of 78-80 GPa. Residual stresses in the evaporated gold films have been measured as 28-110MPa in tension, The rupture strength of the gold film has turned out to be almost equal to that of dental gold alloy (310-380MPa). It has been demonstrated that the present specimen fabrication method and blister test apparatus have been effective for simultaneous measurement of Young's modulus, residual stress and repture strength of thin solid films. Especially, the electropolishing technique employed here has provided a simple and practical way to fabricate thin membranes in a circular or an arbitrary shape, which could not be obtained by the conventional anisotropic silicon mecromachining technique.

Optimal Rechlorination for the Regulation of Chlorine Residuals in Water Distribution Systems (배수관망의 잔류염소 평활화를 위한 최적 재염소 처리)

  • Yoon, Jae-Heung;Oh, Jung-Woo;Choi, Young-Song
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.90-98
    • /
    • 1998
  • The optimal rechlorination in water distribution systems was investigated by incorporating optimization techniques into a numerical water quality model. For a hypothetical system that consists of 10 junctions including a storage tank and 12 links, the bulk ($k_b$) and pipe-wall ($k_w$) decay-rate constants of chlorine residual are assumed to be 2.0 1/day and 1.5 m/day, respectively. It was also assumed that the lower and upper limits of chlorine residual in the network are 0.2 mg/L and 0.6 mg/L. When the chlorine source is only the storage tank (without rechlorination), the high levels of chlorine residual appear near the storage tank to maintain the chlorine residuals above the lower limit over the junctions. On the other hand, the chlorine residuals in the network are distribute within the desirable range (0.2 - 0.6 mg/L) after the optimal rechlorination through five injection sites including the storage tank. In case of a real water distribution system that comprises 28 junctions including a clear well and 27 links, the bulk and pipe-wall decay-rate constants are 0.3 1/day and 0.2 m/day, respectively. Before rechlorination, the required chlorine residual at the clearwell is 5.1 mg/L to keep the chlorine residuals above the minimum level (0.6 mg/L) over the junctions. By the optimal rechlorination at five injection sites, the chlorine residuals are distributed within a desirable range of 0.6 mg/L through 2.0 mg/L, which can avoid the excess of chlorine residuals near the clear well. Consequently, total chlirine doses are decreased by 81% in the hypothetical distribution network and 69 % in the real distribution network for satisfying the minimum chlorine residuals.

  • PDF