• Title/Summary/Keyword: residual phase

Search Result 697, Processing Time 0.026 seconds

Development of ZnO Varistor for Distribution Surge Arrester (18kV, 5kA) (배전급 피뢰기(18kV, 5kA)용 ZnO 바리스터 소자 개발)

  • 박춘현;윤관준;조이곤;정세영;서형권
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.212-216
    • /
    • 2000
  • ZnO varistors for distribution surge arrester (18kV, 5kA) were developed and tested microstructure and electrical characteristics. Microstructure of ZnO varistor was consisted of ZnO grain, spinel phase and Bi-rich phase. Average grain size of ZnO varistor was $\mu\textrm{m}$ Reference voltage and lightning impulse residual voltage of ZnO varistor exhibited a good haracteristics above 5.5kV and below 11.56kV, respectively. Consequently, discharge capacity which is the most important characteristics of ZnO varistor for surge arrester exhibited excellent properties above 70kA at twice high-current impulse test. Moreover, variation rate of reference voltage and lightning impulse residual voltage showed below 5% and 2% after high-current impulse test, respectively. Leakage current and watt loss of ZnO varistor will not increase during accelerated aging test at stress condition, such as 3.213kV/$115^{\circ}C$/1000h.

  • PDF

Microstructure of the Brazed Joint for LRE Injector (액체로켓엔진용 인젝터 접합부의 미세조직)

  • 남대근;홍석호;이병호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.87-89
    • /
    • 2004
  • Brazing is an indispensable manufacturing technology for liquid rocket engine. In this study, for LRE injector, stainless steel 316L was used of base metal and Ni based MBF-20 of insert metal. The brazing and diffusion was carried out under various conditions. There are solid phase and. residual liquid phase in the brazed joint. With increment of holding time, the amount of solid phase increased and the elements of base metal and insert metal compositionally graded. Boron diffused from insert metal came into base metal and made boride with Cr and Mo at the brazed joint of base metal and insert metal.

  • PDF

Limitations of the Linear Solvation Energy Relationships in Reversed Phase Liquid Chromatography

  • Cheong, Won-Jo;Choi, Jang-Duck
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.868-873
    • /
    • 1994
  • We have re-examined the linear solvation energy relationships in reversed phase liquid chromatography by considering various solutes including quite a number of compounds of strong hydrogen bond capability. We observed that solutes of strong hydrogen bond ability should be excluded in order to obtain resonable correlations between In k' and solute polarity parameters and that inclusion of one or two such solutes causes severe distortions of correlation results. This anomaly may be due to existence of residual silanol groups in the stationary phase, that is, their specific interactions with solutes.

Correlation Estimation between Geochemical Metal-fraction and Soil Properties in Agricultural and Industrial Soils (농경지 및 공장지역 토양 내 중금속 존재형태와 토양 특성과의 상관성 평가)

  • Lee, Hong-gil;Kim, Ji-in;Noh, Hoe-Jung;Park, Jeong-Eui;Kim, Tae Seung;Yoon, Jeong Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.169-178
    • /
    • 2016
  • The Standards, Measurement and Testing Programme (SM&T-formerly BCR) extraction procedure was applied to fractionate Cr, Cu, Ni, Pb and Zn in 23 top soil samples into: (i) exchangeable phase; (ii) reducible phase; (iii) oxidisable(sulfides and organics bound) phase; and (iv) residual phase. Fractions of Cr and Ni were in the order of residual > oxidisable > reducible > exchangeable phase. The oxidisable phase was identified as dominant for Cu and Pb. Zn had the highest ratio of exchangeable phase in comparision to the other metals. The bioavailability and mobility were assessed to be the greatest for Zn, followed by a decreasing order of Pb, Cu, Ni and Cr. All metal average concentrations in topsoil samples was higher in industrial sites than in agricultural sites. Our results revealed higher concentrations in topsoil samples (0~15 cm) than in sub soils (15~30 cm, 30~60 cm) for most metals at six sites (No. 5, 6, 17, 19, 20, 23). The fractions of exchangeable, reducible ad oxidisable phases showed relatively high correlation with soil pH, Fe/Mn oxide concentrations and organic matter contents, respectively.

A New In-band Full-duplex SIC Scheme Using a Phase Rotator

  • Lee, Haesoon;Kim, Dongkyu;Kim, Jinmin;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.240-245
    • /
    • 2014
  • How well the self-interference cancellation (SIC) technique performs is a primary issue in realizing an in-band full-duplex (FD) wireless communication system. One factor affecting its performance is channel estimation error on the self-interference channel. We propose a new analog SIC scheme which is robust to channel estimation error. It uses phase rotators in the radio frequency (RF) chain. We also derive closed-form equations for the residual self-interference of the proposed and the conventional schemes. The analytical and numerical results show that the residual self-interference under the proposed SIC scheme is less than that using the conventional scheme, even though channel estimation error is present.

Finite Element Analysis of Multi-Pass Welding Structure (다층용접 구조물의 유한요소해석)

  • Ha, Joon-Wook;Kim, Tae-Woan;Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.730-735
    • /
    • 2000
  • The finite element analysis by the computer program SYSWELD in consideration of phase transformation was carried out to simulate the multi-pass welding process of SA106 Gr. C which is used for the main steam pipe in nuclear power plant. All the numerical results such as temperatures, the size of heat affected zone and the residual stresses were compared to the experimental results.

  • PDF

Effect of Grain Boundary Modification on the Microstructure and Magnetic Properties of HDDR-treated Nd-Fe-B Powders

  • Liu, Shu;Kang, Nam-Hyun;Yu, Ji-Hun;Kwon, Hae-Woong;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • The microstructure and magnetic properties of HDDR-treated powders after grain boundary diffusion process (GBDP) with Nd-Cu alloy at different temperatures have been studied. The variation of GBDP temperature had multifaceted influences on the HDDR-treated powders involving the microstructure, phase composition and magnetic performance. An enhanced coercivity of 16.9 kOe was obtained after GBDP at $700^{\circ}C$, due to the modified grain boundary with fine and continuous Nd-rich phase. However, GBDP at lower or higher temperature resulted in poor magnetic properties because of insufficient microstructural modification. Especially, the residual hydrogen induced phenomenon during GBDP strongly depended on the GBDP temperature.

Efficient ICI Self-Cancellation Scheme for OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.537-544
    • /
    • 2014
  • In this paper, we present a new inter-carrier interference (ICI) self-cancellation scheme - namely, ISC scheme - for orthogonal frequency-division multiplexing systems to reduce the ICI generated from phase noise (PHN) and residual frequency offset (RFO). The proposed scheme comprises a new ICI cancellation mapping (ICM) scheme at the transmitter and an appropriate method of combining the received signals at the receiver. In the proposed scheme, the transmitted signal is transformed into a real signal through the new ICM using the real property of the transmitted signal; the fast-varying PHN and RFO are estimated and compensated. Therefore, the ICI caused by fast-varying PHN and RFO is significantly suppressed. We also derive the carrier-to-interference power ratio (CIR) of the proposed scheme by using the symmetric conjugate property of the ICI weighting function and then compare it with those of conventional schemes. Through simulation results, we show that the proposed ISC scheme has a higher CIR and better bit error rate performance than the conventional schemes.

Dispersion-Managed Links Formed of SMFs and DCFs with Irregular Dispersion Coefficients and Span Lengths

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • The various techniques to compensate for the signal distortion due to the group velocity dispersion (GVD) and nonlinear Kerr effects of optical fibers in the optical links have been proposed in the literature. We propose a flexible dispersion-managed link configuration consisted of single-mode and dispersion-compensating fibers with irregular dispersion coefficients over all fiber spans, and an optical phase conjugator added midway along the optical links. By distributing the lengths of the single mode fibers, we achieve a flexible optical link. The simultaneous ascending and descending distribution of the single-mode fiber lengths before and after the optical phase conjugator, respectively, best compensates the distorted wavelength division multiplexed signals in the optical link with non-fixed coefficients. Our result is consistent with those of our previous work on fixed coefficients. Therefore, to improve the compensation at any magnitude of dispersion coefficient, we must artificially distribute the lengths of the single-mode fibers into a dispersion-managed link.

Asymmetricity of Optical Phase Conjugation in Optical Transmission Links with Dispersion Management (분산 제어가 적용된 광전송 링크에서 광 위상 공액의 비대칭성)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.801-809
    • /
    • 2010
  • Limitation of optical phase conjugation for implementation of wideband and long-haul WDM transmission system is symmetric distribution of optical power and local dispersion with respect to optical phase conjugator (OPC). This limitation forces OPC to place at midway of total transmission length. This paper shows that the limitation of optical phase conjugation is overcame by applying optimal net residual dispersion (NRD) into transmission links based in inline dispersion management (DM). Optimal NRD related with OPC position is decided by combination of precompensation and postcompensation. It is confirmed that optimal NRD depends on launch power of WDM channels and system performance criterion as well as OPC position. That is, in case of 1 dB eye opening penaty (EOP) as a performance criterion for WDM channels with 0 dBm launch power, it is confirmed that OPC is allowed to place at anywhere of 1000 km by applying best NRD related with exact OPC position into transmission links. And, it is confirmed that, under 3 dB EOP criterioin for WDM channels with 3 dBm launch power, OPC is allowed to place at 350~700 km by applying NRD between 100 ps/nm and 200 ps/nm into transmission links, though that NRD value is not best combination of precompensation and postcompensation.