• Title/Summary/Keyword: residual life assessment

Search Result 85, Processing Time 0.028 seconds

Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement (미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가)

  • Kim, Jung-Ki;Nahm, Seung Hoon;Kim, Amkee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

A Study on the Assessment of Residual Life Span for Old Type Signalling Equipment (노후신호장치 잔존수명 평가에 관한 연구)

  • Shin, Ducko-Shin;Lee, Jae-Ho;Shin, Kyung-Ho;Kim, Yong-Kyu;Kang, Min-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.535-541
    • /
    • 2009
  • The reliability of control system composed of electronic parts has been studied by DoD since 1960, and has been undertaken mainly by Europe for railways. Especially in Korea, a study on reliability of signalling equipment has been taken since 2000, requiring reliability test for effective maintenance of old type signalling equipment which no longer has information on its past reliability. This study evaluates the reliability test in units of parts for old type signalling equipment; for instance, failure rate in units of parts, or failure data during operation; which was utilized without its consistent reliability monitoring and analysis data for over 20 years. Also, reliability change at this point in time has been estimated by using residual life span function, and a model which can evaluate the possibility of extended operation through stress acceleration test has been developed. This model will be utilized to establish future maintenance policy for train operating company's operation on old type signalling equipment.

Development of a Safety Assessment Method using Detailed Structural Analysis for Iron-Manufacturing Plant Structures (상세구조해석을 이용한 제철설비구조물 안전성 평가 기술개발)

  • Lee, Man-Seung;Lee, Jae-Myung;Paik, Jeom-Kee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.93-99
    • /
    • 2005
  • Up to date, the life extension of industrial plant structures has been strongly required in the field of iron-manufacturing company, atomic or power generation company and so on. Fault monitoring, maintenance of aging structural components, safety assessment and residual life prediction may be recognized as typical and/or practical methods in terms of life extension methods. Based on the construction of damage scenario, precise analysis method and development of the risk or reliability assessment, a number of studies have been carried out in this viewpoint. In conjunction with the finite element analysis technique, a practical procedure for the safety assessment of iron-manufacturing plant structures was developed in this paper with a particular interest in furnace. By virtue of the detailed finite element analyses for blust furnace under an operational condition, the validity of the proposed procedure for safety assessment was presented.

Application of the French Codes to the Pressurized Thermal Shocks Assessment

  • Chen, Mingya;Qian, Guian;Shi, Jinhua;Wang, Rongshan;Yu, Weiwei;Lu, Feng;Zhang, Guodong;Xue, Fei;Chen, Zhilin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1423-1432
    • /
    • 2016
  • The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the "screening criterion" for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no "screening criterion". In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

An Experimental Study on High Temperature Material Properties of Welded Joint (용접부의 고온 재료물성에 대한 실험적 연구)

  • Baek, Un-Bong;Yun, Gi-Bong;Seo, Chang-Min;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3096-3103
    • /
    • 2000
  • High temperature material properties of a welded joint were experimentally studied. Tensile and creep properties were measured for each part of weld metal. HAZ(heat affected zone) and parent metal at 538$^{\circ}C$. HAZ metal was obtained by a simulated heat treatment. Results showed that the order of tensile strength is weld>HAZ> parent both at 24$^{\circ}C$ and at 538$^{\circ}C$. Creep resistance was also the highest for weld metal and lowest for parent metal. Creep rupture life curves were obtained and converted to Monkman-Grant relation which is useful for life assessment. Use of the data obtained in this study is discussed.

Simulation-based fatigue life assessment of a mercantile vessel

  • Ertas, Ahmet H.;Yilmaz, Ahmet F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.835-852
    • /
    • 2014
  • Despite the availability of other transport methods such as land and air transportations, marine transportation is the most preferred and widely used transportation method in the world because of its economical advantages. In service, ships experience cyclic loading. Hence, it can be said that fatigue fracture, which occurs due to cyclic loading, is one of the most critical failure modes for vessels. Accordingly, this makes fatigue failure prevention an important design requirement in naval architecture. In general, a ship structure contains many structural components. Because of this, structural modeling typically relies on Finite Element Analysis (FEA) techniques. It is possible to increase fatigue performance of the ship structures by using FEA in computer aided engineering environment. Even if literature papers as well as rules of classification societies are available to assess effect of fatigue cracks onto the whole ship structure, analytical studies are relatively scarce because of the difficulties of modeling the whole structure and obtaining reliable fatigue life predictions. As a consequence, the objective of this study is to improve fatigue strength of a mercantile vessel against fatigue loads via analytical method. For this purpose, the fatigue life of the mercantile vessel has been investigated. Two different type of fatigue assessment models, namely Coffin-Manson and Morrow Mean stress approaches, were used and the results were compared. In order to accurately determine the fatigue life of the ship, a nonlinear finite element analysis was conducted considering plastic deformations and residual stresses. The results of this study will provide the designer with some guidelines in designing mercantile vessels.

The behaviour of strength and fatigue crack propagation of various steels in steel bridges (철강구조물 부재의 강도평가 및 피로균열진전거동)

  • Han, Seung-Ho;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1694-1701
    • /
    • 1997
  • The residual safety assessment of steel structures, an important subject in practice, is given to much attention. Life prediction in the planning course of steel structures under fatigue loading is mainly based on fatigue design criteria resulting from S-N curves. But for any reason cracks have to be assumed due to fabrication failures or fatigue loading in service which can lead total fracture of structures. The life prediction can be carried out by means of fracture mechanics using Paris-Erdogan equation($da/dN=C {\cdot}{\Delta}K^m$). The paper presents results from charpy test to interpret transition behaviour of charpy energy($A_V$) in a wide temperature range and from constant-load-amplitude test to measure fatigue crack growth of various steels widely used in steel bridges since beginning of 20 centuries in Europe. In the normal service temperature range of steel bridges, the steel S355M shows higher maximum charpy energy($A_{Vmax}$) and lower transition temperature($T_{AVmax/2}$) than other steels considered. The C and m of Paris-Erdogan equation on the steels appear to be correlated, and to be affected by the R-ratios due to crack closure, especially at a low fatigue crack growth rate. Scanning electron microscopy analysis was carried out to interpret an influence of the crack closure effects on the correlation of C and m.

Root Cause Analysis and Structural Integrity Evaluation for a Crack in a Reactor Vessel Upper Head Penetration Nozzle (원자로 상부헤드 관통노즐 균열에 대한 원인분석 및 건전성 평가)

  • Lee, Kyoung-Soo;Lee, Sung-Ho;Lee, Jeong-Seog;Lee, Jae-Gon;Lee, Seung-Gun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents the results of integrity assessment for the cracks happened in reactor vessel upper head penetration nozzles. The crack morphology for a boat sample from crack area was analyzed through microscope. The stress condition including weld residual stress around crack was analyzed using finite element analysis. From the results of crack morphology and stress condition, the crack was concluded as primary water stress corrosion cracking. The integrity of the cracked nozzle was assessed by the methodology provided in ASME Section XI. According to the assessment results, the remaining life of the cracked nozzle was 1.43 yrs. and the plant decided to repair it.