• 제목/요약/키워드: residual layer

검색결과 661건 처리시간 0.027초

플라즈마 이온질화한 SACM645 강의 미세조직 및 피로균열 발생의 해석 (The Analysis of Fatigue Crack Initiation and Microstructure of Plasma Ion Nitrided SACM645 Steel)

  • 김경태;권숙인
    • 열처리공학회지
    • /
    • 제9권1호
    • /
    • pp.69-77
    • /
    • 1996
  • The fatigue crack initiation behavior of plasma ion nitrided SACM645 steel was investigated through the rotary bending fatigue test and residual stress measurement by XRD. It was shown by XRD and EPMA that the plasma ion nitrided surface was composed of ${\gamma}^{\prime}(Fe_4N)$phase and ${\varepsilon}(Fe_{2-3}N)$phase, and that the nitrogen atoms existed in Fe matrix in diffusion layer. The OM, SEM and Auger spectroscopy showed that the depth of compound layer, mixed compound and diffusion layer, and diffusion layer was $8{\mu}m$, $30{\mu}m$ and $300{\mu}m$, respectively. However, the microhardness test showed that the depth of hardened layer was $500{\mu}m$. The tensile strength of the ion nitrided SACM645 was lower than that of the unnitrided SACM645, and the ion nitrided specimen was fractured without plastic deformation. The nitrided SACM645 showed much poorer low cycle fatigue properties than the unnitrided one. In rotary bending fatigue, the fatigue strength of the ion nitrided SACM645 was higher than that of the unnitrided specimen, and the fatigue crack initiation sites changed by applied fatigue stress levels. The XRD result showed that the ion nitrided SACM645 has the compressive residual stress from surface to $600{\mu}m$ deep and the tensile residual stress from $600{\mu}m$ to deeper site. It is thought that crack initiation takes place at the point where the total stress of residual stress and applied stress is maximum.

  • PDF

이온질화 처리강의 마모현상 분석에 관한 연구 (Study on the Analysis of Wear Phenomena of Ion-Nitrided Steel)

  • 조규식
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.42-52
    • /
    • 1997
  • This paper deals with wear characteristics of ion-nitrided metal theoretically and experimentally in order to analysis of wear phenomena. Wear tests show that compound layer of ion-nitrided metal reduces wear rate when the applied wear load is mall. However, as th load becomes large, the existence of compound layer tends to increase wear rate. The residual stress at the surface of ion-nitrided metal is measured, and the internal stress distribution is calculated when the normal and tangential forces are applied to the surface of metal. Compressive residual stress is largeest at the compound layer, and decreases as the depth from the surface increases. Calculation shows that the maximum stress exists at a certain depth from the surface when normal and tangential force are applied, and that the larger the wear load is the deeper the location of maximum stress becomes. In the analysis, it is found that under small applied wear load the critical depth, where voids and cracks may be created and propagated, is located at the compound layer, as the adhesive wear, where hardness is an important factor, is created the existence of compound layer reduces the amount of wear. When the load becomes large the critical depth is located below the compound layer, and delamination, which may be explained by surface deformation, crack nucleation and propagation, is created, and the existence of compound layer increases wear rate.

UV 나노임프린트 공정에서의 수지 액적 증발 거동 분석 (Analysis of the Evaporation Behavior of Resin Droplets in UV-Nanoimprint Process)

  • 최두순;김기돈
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.268-273
    • /
    • 2009
  • Ultraviolet nanoimprint lithography (UV-NIL), which is performed at a low pressure and at room temperature, is known as a low cost method for the fabrication of nano-scale patterns. In the patterning process, maintaining the uniformity of the residual layer is critical as the pattern transfer of features to the substrate must include the timed etch of the residual layer prior to the etching of the transfer layer. In pursuit of a thin and uniform residual layer thickness, the initial volume and the position of each droplet both need to be optimized. However, the monomer mixtures of resin had a tendency to evaporate. The evaporation rate depends on not only time, but also the initial volume of the monomer droplet. In order to decide the initial volume of each droplet, the accurate prediction of evaporation behavior is required. In this study, the theoretical model of the evaporation behavior of resin droplets was developed and compared with the available experimental data in the literature. It is confirmed that the evaporation rate of a droplet is not proportional to the area of its free surface, but to the length of its contact line. Finally, the parameter of the developed theoretical model was calculated by curve fitting to decide the initial volume of resin droplets.

저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석 (Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process)

  • 김재익;이승태;이창희
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제14권3호
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

Effect of Heat Treatment Conditions and Densities on Residual Stresses at Hybrid (FLN2-4405) P/M Steels

  • Kafkas, Firat;Karatas, Cetin;Saritas, Suleyman
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.566-567
    • /
    • 2006
  • The characteristics of residual stresses occurring in PM steel based nickel (FLN2-4405) was investigated. The measurements of residual stresses were carried out by electrochemical layer removal technique. The values and distributions of residual stresses occurring in PM steel processed under various densities and heat treatment conditions were determined. In most of the experiments, tensile residual stresses were recorded in surface of samples. The residual stress distribution on the surface of the PM steels is affected by the heat treatment conditions and density. Maximum values of residual stresses on the surface were observed sinter hardened condition and $7.4\;g/cm^3$ density. Minimum level of recorded tensile residual stresses are150 MPa and its maximum level is 370 MPa.

  • PDF

H.264/SVC의 계층간 화면내 예측에서 보간법에 따른 부호화 성능 분석 (Performance Analysis of Coding According to the Interpolation filter in Inter layer Intra Prediction of H.264/SVC)

  • 길대남;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.225-227
    • /
    • 2009
  • International standard specification, H.264/SVC improved from H.264/AVC, is set up so as to promote free use of huge multimedia data in various channel environments.;H.264/AVC is a international standard speicification for video compression, adopted and commercialized as standard for DMB broadcasting by JVT of ISO/IEC MPEG and ITU-T VCEG. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding. Among prediction technologies, 'inter-layer intra prediction' is to use co-located block of up sampled sublevels as a prediction signal. At this time, application of interpolation is one of the most important factors to determine encoding efficiency. SVC's currently using poly-phase FIR filter of 4-tap and 2-tap respectively to luma components. This paper is written for the purpose of analyzing encoding performance according to the interpolation. For this purpose, we applied poly-phase FIR filter of '2-tap', '4-tap' and '6-tap' respectively to luma components and then measured bit-rate, PNSR and running time of interpolation filter. We're expecting that the analysis results of this paper will be utilized for effective application of interpolation filter. SVC standard uses 'intra/inter prediction' in AVC as well as 'inter-layer intra prediction', 'inter-layer motion prediction' and 'inter-layer residual prediction' to improve efficiency of encoding.

  • PDF

HF 기상식각에 의한 TEOS 희생층의 표면 미세가공 (Surface Micromachining of TEOS Sacrificial Layers by HF Gas Phase Etching)

  • 장원익;이창승;이종현;유형준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.725-730
    • /
    • 1996
  • The key process in silicon surface micromachining is the selective etching of a sacrificial layer to release the silicon microstructure. The newly developed anhydrous HF/$CH_3$OH gas phase etching of TEOS (teraethylorthosilicate) sacrificial layers onto the polysilicon and the nitride substrates was employed to release the polysilicon microstructures. A residual product after TEOS etching onto the nitride substrate was observed on the surface, since a SiOxNy layer is formed on the TEOS/nitride interface. The polysilicon microstructures are stuck to the underlying substrate because SiOxNy layer does not vaporize. We found that the only sacrificial etching without any residual product and stiction is TEOS etching onto the polysilicon substrate.

  • PDF

전자빔에 의한 조성구배계면 Ni/Steel 합금재료의 개발 (Fabrication of Graded-Boundary Ni/steel Material by Electron Beam)

  • 김병철;김도훈
    • 한국레이저가공학회지
    • /
    • 제2권2호
    • /
    • pp.27-33
    • /
    • 1999
  • Electron beam was applied on the low carbon steel in order to fabricate Metal/Metal GBM(Graded Boundary Material). Ni sheet was placed on the steel substrate. The electron beam was irradiated on the surface and produced a homogeous alloyed layer. Sequential repetition of electron beam treatments for 4 times resulted in 8mm thick graded layer. To determine each layers property, optical microscopy, XRD, microhardness tester and EDS were used. The residual stress was measured by the low angle x-ray diffraction method. The graded boundary layer was stepwise profile, but Ni content incresed up to 80 wt% and Fe content decreased 20 wt% near surface. Each layers microstructure and hardness varied by different Fe/Ni composition. The compressive residual stress was induced by martensite transformation in the 1st and End layers and the shrinkage cracks were formed in graded layer by rapid cooling.

  • PDF

Experimental Study on Reduction of Temporal Dark Image Sticking on Bright Screen in AC-PDPs Using RF-Plasma Treatment on MgO layer

  • Park, Choon-Sang;Kim, Jae-Hyun;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.101-103
    • /
    • 2009
  • Minimizing the residual impurity level on the MgO layer is the key factor for reducing temporal dark image sticking on bright screen. In this paper, to reduce the residual impurity level on the MgO layer of 50-in. full-HD ac-PDP with He (35%) - Xe (11%) contents, RF-plasma treatments on the MgO layer are adopted under various gases for plasma treatment. As a result of monitoring the difference in the display luminance between the before and after 5-min. sustain discharge with a square-type image at peak luminance, the Ar and Ar>$O_2$ plasma treatments can reduce the temporal dark image sticking on the bright screen in an ac-PDP.

  • PDF